II.3. Квадрат теңдеуді шешудің 10 түрлі әдісі
1-әдіс. Теңдеудің сол жақ бөлігін көбейткіштерге жіктеу
х2 + 10х - 24 = 0 теңдеуді жіктейміз .
Теңдеудің сол жақ бөлігін көбейткіштерге жіктейміз:
х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).
Демек, теңдеуді былай жазуға болады:
(х + 12)(х - 2) = 0
Көбейтінді нөлге тең болғандықтан, ең болмағанда көбейткіштердің біреуі нөлге тең болуы керек. Сондықтан теңдеулердің сол жақ бөлігіндегі х = 2 және х = - 12 сандары х2 + 10х - 24 = 0 теңдеуінің түбірлері болып табылады.
2-әдіс. Толық квадратқа келтіру әдісі.
Мысал: х2 + 6х - 7 = 0=0 теңдеуін шешейік.
Сол жақ бөлігін толық квадратқа келтіреміз. Ол үшін х2 + 6х өрнегін төмендегідей жазып аламыз:
х2 + 6х = х2 + 2• х • 3.
Алынған өрнектің бірінші қосындысы х-тың квадраты, ал екінші қосындысы х пен 3-тің екі еселенгені. Толық квадрат алу үшін 32-ын қосу керек. Сонда
х2 + 2• х • 3 + 32 = (х + 3)2.
Енді теңдеудің сол жағын түрлендіреміз. Берілген теңдеуге 32 -ын қосып, алып тастаймыз. Сонда шығатыны:
х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.
Сонымен, берілген теңдеуді былайша жазуға болады:
(х + 3)2 - 16 =0, (х + 3)2 = 16.
Бұдан , х + 3 - 4 = 0, х1 = 1, немесе х + 3 = -4, х2 = -7.
Достарыңызбен бөлісу: |