1. Методика изучения элементов математического моделирования в курсе математики 6 класса
Понятие математической модели и моделирования
Прикладная направленность обучения предусматривает овладение школьниками математическими методами познания действительности, одним из которых является метод математического моделирования.
"Метод математического моделирования заключается в том, что для исследования какого-либо объекта выбирают или строят другой объект, в каком-то отношении подобный исследуемому. Построенный или выбранный объект изучают и с его помощью решают исследуемые задачи, а затем результаты решения этих задач переносят на первоначальное явление или объект". [16]
Понятия "математическая модель" и "моделирование" широко используются в науке и на производстве. Известно, что для математического исследования процессов и явлений, реально происходящих в действительности, надо суметь описать их на языке математики, т.е. построить математическую модель процесса, явления. Математические модели и являются объектами непосредственного математического исследования.
Математической моделью называют описание какого-либо реального процесса или некоторой исследуемой ситуации на языке математических понятий, формул и отношений.
Математическая модель - это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. "Математическая модель, основанная на некотором упрощении, идеализации, не тождественна объекту, а является его приближённым отражением. Однако благодаря замене реального объекта соответствующей ему моделью появляется возможность сформулировать задачу его изучения как математическую и воспользоваться для анализа универсальным математическим аппаратом, который не зависит от конкретной природы объекта". [15] Чарльз Лейв и Джеймс Марч дают такое определение модели: “Модель - это упрощенная картина реального мира. Она обладает некоторыми, но не всеми свойствами реального мира. Она представляет собой множество взаимосвязанных предположений о мире. Модель проще тех явлений, которые она по замыслу отображает или объясняет". В настоящее время построение, исследование и приложение математических моделей является, можно сказать, основным предметом деятельности математиков.
Поэтому и в школьном курсе математики, прежде всего при решении учебных математических задач, моделированию, особенно алгебраическому и аналитическому, следует уделить должное внимание. Действительно, математические модели используются для решения (или хотя бы облегчения решения) УМЗ. Кроме того, составление математической модели задачи, перевод задачи на язык математики исподволь готовит учащихся к моделированию реальных процессов и явлений в их будущей деятельности.
При решении учебных математических текстовых задач особенно часто используются их алгебраические и аналитические модели. Такой моделью может быть функция, описывающая явление или процесс, уравнение, система уравнений, неравенство, система неравенств, система уравнений и неравенств и др.
При составлении модели задача, таким образом, переводится на язык алгебры или анализа.
Функции и цели обучения математическому моделированию в школе
Можно условно выделить следующие дидактические функции математического моделирования:
Познавательная функция.
Методической целью этой функции является формирование познавательного образа изучаемого объекта. Это формирование происходит постоянно при переходе от простого к сложному.
Здесь мысль учащегося направляется по кратчайшим и наиболее доступным путям к целостному восприятию объекта. Реализация познавательной функции не предопределяет процесса научного познания, ценность этой функции состоит в ознакомлении учащихся с наиболее кратчайшим и доступным способом осмысления изучаемого материала.
Функция управления деятельностью учащихся.
Математическое моделирование предметно и потому облегчает ориентировочные, контрольные и коммуникационные действия. Ориентировочным действием может служить, например, построение чертежа, соответствующего рассматриваемому условию, а также внесение в него дополнительных элементов.
Контролирующие действия направлены на обнаружение ошибок при сравнении выполненного учащимися чертежа (схемы, графика) с помещенными в учебнике или на выяснение тех свойств, которые должны сохранить объект при тех или иных преобразованиях.
Коммуникационные действия отвечают той стадии реализации функции управления деятельностью учащихся, которая соответствует исследованию полученных ими результатов. Выполняя эти действия, учащийся в свете собственного опыта объясняет другим или хотя бы самому себе по построенной модели суть изучаемого явления или факта.
Интерпретационная функция.
Известно, что один и тот же объект можно выразить с помощью различных моделей. Например, окружность можно задать с помощью пары объектов (центр и радиус), уравнением относительно осей координат, а также с помощью рисунка или чертежа. В одних случаях можно воспользоваться ее аналитическим выражением, в других - геометрической моделью. Рассмотрение каждой из этих моделей является ее интерпретацией; чем значимей объект, тем желательней дать больше его интерпретаций, раскрывающих познавательный образ с разных сторон.
Можно также говорить об эстетических функциях моделирования, а также о таких, как функция обеспечения целенаправленного внимания учащихся, запоминания и повторения учащимися учебного материала и т.д.
Использование различных функций математической модели способствует наиболее плодотворному мышлению учащегося, так как его внимание легко и своевременно переключается с модели на полученную с ее помощью информацию об объекте и обратно. Такое переключение сводит к минимуму отвлечение умственных усилий учащихся от предмета их деятельности. [12]
Достарыңызбен бөлісу: |