Роль изучения элементов математического моделирования в курсе математики 5-6 классов
Так как в основе решения прикладных задач лежит математическое моделирование, то для реализации прикладной направленности необходимо организовать обучение школьников элементам моделирования, которыми с дидактической точки зрения являются учебные действия, выполняемые в процессе решения задач. Развитие у учащихся правильных представлений о характере отражения математикой явлений и процессов реального мира, роли математического моделирования в научном познании и в практике имеет большое значение для формирования диалектико-материалистического мировоззрения учащихся. Прикладная и практическая направленность математики является важным звеном в развитии правильного мировоззрения школьника, его математического, психологического и общего развития. Наиболее благоприятным для начала изучения математического моделирования является 5-6 класс, так как именно в этот период у школьников происходят определённые психические изменения. В зависимости от того, как школьники будут относиться к учебной деятельности, как они научатся самостоятельно овладевать знаниями, такими и будут их дальнейшие успехи в обучении. Вопросы, изучаемые в курсе математики 5-6 классов, составляют фундамент, на котором строится дальнейшее обучение как математике, так и другим предметам. От уровня знаний и умений, сформированных в 5-6 классах, зависит успешное овладение всего курса математики. В процессе изучения математического моделирования в это время учащиеся знакомятся с теоретическими фактами, идёт формирование основных математических понятий, показ применения математических фактов на практике. Поэтому на этом этапе у школьников складывается определённое отношение к решению задач, а значит и к математике в целом. Не случайно, в учебниках новых поколений понятие математической модели и математического моделирования появляется уже на самых ранних этапах обучения. Так, например, в учебнике для 5 класса Г.В. Дорофеева, Л.Г. Петерсон уже во 2 параграфе изучается тема "Математические модели". Авторы не дают понятие модели, а на примере двух задач показывают, что в двух непохожих ситуациях используется одна и та же математическая модель, сразу указывая на ценность математического моделирования, что одна и та же модель может описывать различные явления. Для того, чтобы построить математическую модель, надо, прежде всего, научиться переводить условия задач на математический язык. Далее говорится, что после перевода задачи на математический язык поиск решения сводится к работе с математическими моделями - к вычислениям, преобразованиям, рассуждениям.
В силу различных причин реально в школе эти учебники используются редко, поэтому идеи математического моделирования большинству учащихся незнакомы. Роль изучения элементов математического моделирования в 5 - 6 классах - пропедевтическая. Введение понятий "модель" и "моделирование", включение в содержание уроков задач прикладного характера делают изучение математики более осмысленным, продуктивным, создаются благоприятные предпосылки для формирования прикладного мышления.
Достарыңызбен бөлісу: |