Учебно-методический комплекс Нур-Султан 2020


Примеры арифметических операций в двоичной систе



бет23/129
Дата17.09.2023
өлшемі9,35 Mb.
#181273
түріУчебно-методический комплекс
1   ...   19   20   21   22   23   24   25   26   ...   129
Байланысты:
informatika kerimbaeva

Примеры арифметических операций в двоичной системе. Вычислим в двоичной системе
Приведенный выше пример показывает, что двоичная система очень удобна для вычислений; операция умножения сводится к простому сложению со сдвигом множителя по позиции, а деление — к вычитанию, причем сложение (вычитание) производятся только один раз на разряд множителя (частного). Однако неудобной является запись чисел, которая однообразна и громоздка; легко допустить описку. Для записи двоичных кодов широко используется шестнадцатиричный код.

Восьмеричная и шестнадцатиричная системы счисления


С точки зрения изучения принципов представления и обработки информации в компьютере, обсуждаемые в этом пункте системы представляют большой интерес.
Хотя компьютер «знает» только двоичную систему счисления, часто с целью уменьшения количества записываемых на бумаге или вводимых с клавиатуры компьютера знаков бывает удобнее пользоваться восьмеричными или шестнадцатиричными числами, тем более что, как будет показано далее, процедура взаимного перевода чисел из каждой из этих систем в двоичную очень проста - гораздо проще переводов между любой из этих трех систем и десятичной.
Перевод чисел из десятичной системы счисления в восьмеричную производится (по аналогии с двоичной системой счисления) с помощью делений и умножений на 8. Например, переведем число 58,32(10):
58 : 8 = 7 (2 в остатке),
7 : 8 = 0 (7 в остатке).
0,32 • 8 = 2,56,
0,56 • 8 = 4,48,
0,48-8=3,84,...
Таким образом,
58,32(10) =72,243... (8)
(из конечной дроби в одной системе может получиться бесконечная дробь в другой).
Перевод чисел из десятичной системы счисления в шестнадцатиричную производится аналогично.
С практической точки зрения представляет интерес процедура взаимного преобразования двоичных, восьмеричных и шестнадцатиричных чисел. Для этого воспользуемся табл. 1.6 чисел от 0 до 15 (в десятичной системе счисления), представленных в других системах счисления.
Для перевода целого двоичного числа в восьмеричное необходимо разбить его справа налево на группы по 3 цифры (самая левая группа может содержать менее трех двоичных цифр), а затем каждой группе поставить в соответствие ее восьмеричный эквивалент. Например:
11011001= 11011001, т.е. 11011001(2) =331(8).
Заметим, что группу из трех двоичных цифр часто называют «двоичной триадой».
Перевод целого двоичного числа в шестнадцатиричное производится путем разбиения данного числа на группы по 4 цифры - «двоичные тетрады»:
1100011011001 = 1 1000 1101 1001, т.е. 1100011011001(2)= 18D9(16).
Для перевода дробных частей двоичных чисел в восьмеричную или шестнадцатиричную системы аналогичное разбиение на триады или тетрады производится от точки вправо (с дополнением недостающих последних цифр нулями):
0,1100011101(2) =0,110 001 110 100 = 0,6164(8),
0,1100011101(2) = 0,1100 0111 0100 = 0,C74(16).
Перевод восьмеричных (шестнадцатиричных) чисел в двоичные производится обратным путем - сопоставлением каждому знаку числа соответствующей тройки (четверки) двоичных цифр.
Соответствие чисел в различных системах счисления

Десятичная

Шестнадцатиричная

Восьмеричная

Двоичная

0

0

0

0

1

1

1

1

2

2

2

10

3

3

3

11

4

4

4

100

5

5

5

101

6

6

6

110

7

7

7

111

8

8

10

1000

9

9

11

1001

10

А

12

1010

11

В

13

1011

12

С

14

1100

13

D

15

1101

14

E

16

1110

15

F

17

1111

Преобразования чисел из двоичной в восьмеричную и шестнадцатиричную системы и наоборот столь просты (по сравнению с операциями между этими тремя системами и привычной нам десятичной) потому, что числа 8 и 16 являются целыми степенями числа 2. Этой простотой и объясняется популярность восьмеричной и шестнадцатиричной систем в вычислительной технике и программировании.
Арифметические действия с числами в восьмеричной и шестнадцатиричной системах счисления выполняются по аналогии с двоичной и десятичной системами. Для этого необходимо воспользоваться соответствующими таблицами.
Контрольные вопросы

  1. Как Вы понимаете понятие информации и какое определение можно дать?

  2. Как называется форма представления информации?

  3. Какие существуют подходы к определению количества информации и кто их открыл?

  4. Чем отличается байт от бита?

  5. Более крупные единицы измерения информации и как они определяются?

  6. Сколько различных информации можно написать одним байтом и обоснуйте почему?

  7. В чем состоит процедура дискретизации непрерывной информации?

  8. Что такое кодирование?

  9. Какая форма представления информации - непрерывная или дискретная приемлема для компьютеров и почему?

  10. В чем отличие позиционной системы счисления от непозиционной?





Достарыңызбен бөлісу:
1   ...   19   20   21   22   23   24   25   26   ...   129




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет