УМКД. 042-18-22.1.10/03-2015
|
2015 ж. № 2 басылым
|
бет -ден
|
ҚАЗАҚСТАН РЕСПУБЛИКАСЫНЫҢ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРЛІГІ
СЕМЕЙ қаласының ШӘКӘРІМ атындағы МЕМЛЕКЕТТІК УНИВЕРСИТЕТІ
|
3 деңгейлі СМЖ құжаты
|
ПОӘК
|
ПОӘК
042-18-22.1.10/03-2015
|
ПОӘК
«Молекулалық биология» пәнінің оқу-әдістемелік құжаттар жиынтығы
|
№ 2 басылым
|
ПӘННІҢ ОҚУ - ӘДІСТЕМЕЛІК КЕШЕНІ
"Молекулалық биология"
5В120200 – “Ветеринариялық санитария” мамандығына арналған
ОҚУ- ӘДІСТЕМЕЛІК ҚҰЖАТТАР ЖИЫНТЫҒЫ
Семей
2015
Мазмұны
1. Глоссарий
2. Дәрістер
3. Тәжірибелік сабақтар
4. Білім алушылардың өз бетімен орындайтын жұмыстары
ГЛОССАРИЙ
Абберация – мутацияның әсерінен хромосоманың құрылымының зақымдануы.
Аллеломорфты белгілер – бір геннің әр түрлі аллельдерінің әсерінен пайда болған белгілер.
Аллополиплоидия – Бір организмнің жасушасында әр түрдің диплоидты хромосомалар жиынтығы.
Антигендер – организмге кірген бөгде заттар иммундық жауап туғызады.
Антидене – жоғары сатыдағы организмдердің иммундық жүйесі бөліп шығаратын белок, олар бөгде молекулалық заттарды ерекше түрде байлайды. Антидене организмдерде пайда болған антигендерге жауап ретінда бөлінеді.
Антикодон – тРНК молекуласының бөлігі, үш нуклеотидтан тұратын және өзіне сәйкес амин қышқылын кодтайтын иРНК ның үш нуклеотидтен тұратын бөлшегін таниды.
Аутбридинг – генетикалық туыс емес өкілдерді шағылыстыру.
Бактерофагтар – бактерияларда өсіп-өнетін вирустар.
Биотехнология - әр түрлі микробиологиялық синтезді, генетикалық және клеткалық инженерияны, ферменттер инженериясын қолдану арқылы өсімдіктің, жануарлардың организміне ықпал ететін және жасанды қосылыстарды өндірістік реакторларда алу үшін көп бағытта жүргізілетін ғылыми-техникалық салксы.
Вектор – дербес еселенетін генетикалық құрылым, оның көмегімен өзгертілетін геномға тиісті генді жеткізіп орналастыруға болады.
Ген – тұқым қуатын ақпараттық құрылымдық бірлік.
Ген инженериясы – алдын ала белгілі жаңа қасиеттері бар тірі оргаизмдерді жасау мәселелерін зерттейтін молекулалық биологияның саласы.
Генетикалық код – белок молекуласына қажетті амин қышқылдарының орнын анықтайтын ДНҚ молекуласындағы үш негізден тұратын тізбек.
Генотип – организмдегі гендер жиынтығы.
Делеция – мутацияның нәтижесінде хромосоманың орта бөлігінің жоғалуы.
Иммунитет – генетикалық бөгде белгілері бар заттардан және тірі денелерден организмнің қорғану әрекеті.
Иммундық реакция – генетикалық бөгде заттарды құртуға, бейтараптандыруға бағытталған организмнің бейімділік жауабы.
Инбридинг - өте жақын туыстас өкілдерді шағылыстыру.
Кариотип – түрге тән хромосома жиынтығы.
Клеткалық инженерия – қайта құрастыру, будандастыру, өсіру негізінде жасушаның жаңа типін жасау әдісі.
Клон – жыныссыз өсіп даму арқылы бір ортақ тектен тараған жасушалар немесе ұрпақтар.
Кодон – триплет.
Комплементарлық – бірін – бірі толықтырушы гендендің болуы, олар бірге әсер етіп, белгінің пайда болуына себеп болады.
Локус – хромосомадағы белгілі бір геннің орны.
Мейоз – жыныс жасушасы ядросының екі рет қатарынан бөлінуінің нәтижесінде төрт гаплоидты жасушаның пайда болуы.
Мозаиктер - әртүрлі генотипі бар жасушалардан тұратын организм.
Мутаген – физикалық және химиялық аген мутацияның жиілігін жоғарылатады.
Мутация – генетикалық материалдың негізгі қасиетін өзгертетін тұқым қуатын өзгеріс.
Ноненс кодондар – амин қышқылдарының ешқайсысына сәйкес калмейтін трансляцияны тежеуші ролін атқаратын кодондар.
Онкогендер – эукариоттар жасушаларынан залалды ісіктерге өзгерте алатын белоктарды кодтайтын гендер.
Онтогенез – организмнің жеке дамуы, туғаннан бастап өмірінің аяғына дейінгі өзгерістер жиыны.
Партеногенез – еркектің гаметасынсыз ұрғашының гаметасынан организмнің дамып өсуі.
Плазмидтер – хромосомамен байланыссыз дербес өмір сүретін сақина тәріздес ДНҚ молекулалары.
Полимерия – бір белгіге әртүрлі, бірақ ұқсас ететін аллельді емес гендердің өзара әрекеттесуінің түрі.
Полиплоидия – гаплоидтық жиынтықпен салыстырғанда хромосомалар санының өсуі.
Профаг – бактериялық жасушаға тұқым қуу материалы қосылған фаг.
Рестриктазалар – ДНҚ-ны кесетін фермент.
РНҚ- полимеразалар – ДНҚ үлгісімен РНҚ синтездейтін ферменттер.
Селекция – мал тұқымын, өсімдіктер сорттарын микроорганизмдердің, бактериялардың және вирустардың расаларын өзгертетін ғылымның саласы.
Транспозон – геномда өз орнын ауыстыра беретін ДНҚ фрагменті.
Фенотип – организмдегі барлық белгілердің жиынтығы
Шағылыстыру – белгілері бойынша айырмашылығы бар бір түрдің өкілдерін жұптау.
Эволюция – тірі табиғаттың тұқым қуу, өзгергіштік және сұрыптау арқылы дамуы.
2 ДӘРІСТЕР
1 Модуль Молекулалық биологияның пайда болуының қысқаша тарихы және дамуының негізгі кезендері
№ 1 дәріс тақырыбы. Кіріспе
Дәріс жоспары:
Молекулалық биология пәні және міндеттері.
Тіршілік туралы ғылымдар жүйесіндегі молекулалық биологияның орны және рөлі.
Молекулалық биологияның пайда болуының қысқаша тарихы және дамуының негізгі этаптары.
ХХ ғасыр соңындағы молекулалық биологияның дамуы.
Молекулалық биологияның Қазақстандағы дамуы.
Жасуша - өмірдің молекулалық негізі.
Пайдаланатын құралдар: проектор, слайдтар
Молекулалық биология – тіршілік құбылыстарының молекулалық негіздері туралы ғылым, биология ғылымдарының арасында негізгі орындардың бірін иеленеді. Генетика, биохимия және биофизика ғылымдарымен тығыз байланысты. Медицина (вирусология, иммунология, онкология, т.б.), ауыл шаруашылығы (жануарлар мен өсімдіктердің тұқым қуалау қасиеттерін белгілі бағытта қадағалай отырып зерттеу) және биотехнология (гендік инженерия, клеткалық инженерия) салаларының теориялық негізі болып табылады.
Негізгі мақсаты – биологиялық ірі молекулалар (белоктар, нуклеин қышқылдары) құрылымын барлық деңгейде зерттеу.
Молекулалық биология нуклеин қышқылы мен белоктардың құрылыс және құрылым ерекшеліктерін, жасушаның генетикалық аппаратының құрылымдық-қызметтік ұйымдастырылуын, ақпараттардың тұқым қуалауының жүзеге асу механизмін, апоптоз, генетикалық код т.б. оқытады.
Молекулалық биологияның ерекшелігі оның макромолекулалардың құрылымын және олардың қызметімен байланысын зерттеуінде. Сол әртүрлі құрылымдардың және олардың қызметінің тегін анықтайды.
Молекулалық биологияның міндеті - клетканы құраушы негізгі тіршілік құбылыстарын (заттардың алмасуы, тұқым қуалаушылық, нуклеин қышқылдарының құрылымы және олардың әр түрлі организмдердегі атқаратын қызметі т.б.) молекулалық деңгейде зерттеу. Яғни молекулалық биология тірі организмдердің жұмыс істеуін, олардың құрамына кіретін молекулалар және атомдардың химиялық құрылымы тұрғысынан зерттейтін ғылым саласы.
Даму тарихы: Молекулалық биология ХХ ғасырдың екінші жартысынан бастап ғылымның дамуында ерекше орын алды. Оның дүниеге келуі және кейінгі кезеңде қарқынды дамуы бүкіл биологияны алдыңғы қатарлы және кең тараған ғылымдар саласына қосты.
Биохимияның бір саласы ретінде дүниге келген молекулалық биология генетика және физиканың әдістері арқылы жылдам дамыды.
Бұл ғылымның атауын 1939 жылы өзін «молекулалық биолог» деп атаған У. Эстбюримен байланыстырады. Ал екі жылдан кейін ол ДНҚ-ң алғашқы рентгеннограммасын жасады және осы арқылы 1869 Ф.Мишер ашқан ДНҚ молекуласының нәзік құрылымын анықтаудың негізін салды.
1953 жылы ағылшын ғалымы Ф.Крик және АҚШ биологы Дж. Уотсон ДНҚ макромолекуласының құрылымының кеңістіктік моделін жасауы – молекулалық биология ғылымының өз алдына жеке ғылым болып қалыптасуына негіз болды. Бұл жаңа сала өзінің дамуына физиктер мен химиктерге борышты, себебі олар биохимиялық мәселелерді шешу үшін әр түрлі екі жақтан кіріскен. Олардың біреулері физикалық әдістерді, әсіресе рентгенқұрылымдық талдауды, биологиялық жағынан аса маңызды макромолеулалардың кеңістіктегі құрылымын анықтауға қолдануға тырысты.
Екінші бағыттағы зерттеушілер генетикалық процестердің молекулалық механизмін бактериялар мен вирустарды зерттеу нәтижелеріне сүйене отырып анықтаған. Бұл "фагтық мектеп" деп аталатын топ Дельбрюк және Лурияның атымен байланысты. Мұнда зор табыстардың бірі О.Т. Эйвери, К. Мак-Леод, М. Мак-Картидің генетикалық ақпараттың иесі белок емес ДНҚ екенін дәлелдеулері еді.
Ал осы биологиялық мәселерді әртүрлі екі тәсілдерді біріктіру арқылы шешу физик Ф.Крик мен биолог Д.Уотсонға ДНҚ-ның қос шиыршығын 1953 жылы ашуға мүмкінді берді.
ХХ ғасырдың 50 жылдарының басында биохимияда ақуыздар мен нуклеин қышқылдарының қарапайым құрылымы туралы мәліметтер ашылды, ДНҚ мен РНҚ молекуласындағы нулеотидтердің саны, құрылымы және орналасу заңдылығы анықталды. ДНҚ-ң қос шиыршықты моделінің жасалуы және комплементарлық принципінің ашылуы қазіргі заманғы биологияның маңызды жаңалықтары болды. Бұл жаңалықтар тірі жүйелер әрекетінің негізгі принциптерін ашты және қазіргі заманғы биологияның одан ары қарайғы зерттеулерін анықтады.
Қазіргі жаратылыстану ғылымдарының молекулалық биологияның алдында қарыздар болуының себебі, молекулалық биологияда ХХ ғасырдың 50 жылдарының ортасынан 70 жылдардың ортасына дейінгі кезеңдерде гентикалық ақпараттардың тұқым қуалауы және олардың ұрпақтан ұрпаққа берілуінің негізгі жолдары мен табиғатының ақылға сыймастай жылдамдықпен анықталуы болып есептеледі.
Молекулалық биологияның негізгі жаңалықтары:
1869 жылы Ф. Мишер ДНҚ-н ашты;
1935 жылы А.Н. Белозерский өсімдіктен ДНҚ-н бөліп алды;
1940 жылы У.Эстбюри ДНҚ-ң алғашқы рентгеннограммасын жасады;
1951 жылы Л.Полинг және Р.Кори ақуыздардың полипептидті тізбегіндегі амин қышқылы қалдықтарының негізгі типтерін анықтады;
1944 жылы О.Т. Эвери ДНҚ тұқым қууалау ақпаратын тасымалдаушы екендігін анықтады;
1952 жылы Р.Франклин мен М.Уилкинс ДНҚ-ның жоғары сапалы рентгенограммасын түсірді;
1953 жылы Д. Уотсон және Ф. Крик ДНҚ-ң қос спиральды моделін жасады;
1960 жылы РНҚ транскрипциясын жүзеге асыратын полимераза ферменті ашылды;
1961 жылы Ф.Жакоб және Дж.Моно бактерияларда гендердің ұйымдасып жұмыс істеуінің және гендік белсенділіктің реттелуінің оперондық (лат. ``operare`` - жұмыс істеу, қызметіне қарай бір-бірімен байланысты ферменттердің синтезін анықтайтын гендер тобы) принципін ашты;
1969 жылы АҚШ-та Г.Хорана қызметтестерімен бірге химиялық жолмен алғашқы генді синтездеді.
Д. Уотсон мен Ф. Крик және т.б. көптеген ірі молекулалық биологтардың керемет жаңалықтарының нәтижесінде ХХ ғасырдың 60 жылдарында-ақ жасушадағы генетикалық ақпараттың берілу жолы анықталды: ДНҚ-РНҚ-Ақуыз.
Сосын біртіндеп ДНҚ репликациясы, транскрипция (РНҚ биосинтезі), трансляция (ақуыз биосинтезі) механизмдері анықталды.
Мұнымен қоса бұл процестердің клетка ішінде таралуын зерттеу жұмыстары дамыды, осының негізінде клеткаішілік компоненттердің (ядро, митохондрия, рибосома) функционналдық маңыздылығы анықталды және Д. Уотсонның 1968 жылы молекулалық биологияға анықтама беруіне негіз болды: «Молекулалық биология биологиялық макромолекулалардың құрылымдарының байланысын және клетканың негізгі компоненттері мен олардың қызметтерін, сонымен қатар тіршіліктің негізін құрайтын клеткада жүретін барлық процесстердің үйлесімділігі мен тұтастығын біріктіретін клетканың өзін-өзі реттеуінің негізгі принциптері мен механизмдерін зерттейді».
Кейіннен бұл ереже кері транскрипция (РНҚ матрицасындағы ДНҚ синтезі) және РНҚ репликациясы процестері туралы ұғымдармен толықтырылады. Тұтас ферменттер қатарын (кері транскриптаза, ДНҚ рестриктаза және т.б.) мақсатты түрде қолданудың әдістерінің ашылуы және талдануы нәтижесінде рекомбинатты ДНҚ алу технологиясы жасалды, молекулалық биология тарихындағы революциялық оқиға бол
ХХ ғасырдың 70 жылдарының соңы мен 80 жылдарының басында молекулалық биология ең бір кемелдену кезеңіне қадам басты. Ферменттердің және биологиялық мембраналардың құрылымы белсенді түрде зерттелді, жоғары сатыдағы организмдердің геномының құрылымын анықтау жұмыстары басталды, жаңа биотехнологияның негіздері жасалды, ақуыз инженериясы дүниеге келді.
Молекулалық биологияның қарқынды дамуының нәтижесінде ХХ ғасырдың 80 жылдарының басында жаңа ғылым саласы биоинформатика (сандық биология, компьютерлік гентика) дүниеге келді.
ХХ ғасырдың молекулалық биология кеңейе түсті, біршама міндеттері: геном құрылымының құпиясын ашу, гендер банкін құру, геномдық дактилоскопия; клеткалардың жіктелуінің, биоалуантүрліліктің, дамудың және қартаюдың, канцерогенездің (қатерлі ісіктің пайда болуы), иммунитеттің молекулалық негіздерін зерттеу және т.б.; генетикалық, вирустық ауруларды анықтау және емдеудің әдістерін ашу; азық-түлік және әртүрлі азықтық биологиялық белсенді қосылыстар (гормондар, энергия сақтаушы заттар, релизинг-фатор) өндірісінің жаңа биотехнологиясын жасау.
Қазақстандағы молекулалық биология
Қазақстанда молекулалық биология саласындағы ғылыми зерттеулер XX ғасырдың 50-жылдарының аяғында Қазақстан Ғылым Академиясының Ботаника институтында басталды. Академик М.Айтхожинның басшылығымен рибосомалардың құрылымы зерттеліп, соның нәтижесінде рибосомалар мен рибонуклеопротеидтердің (мысалы, вирустар) құрылымында айтарлықтай айырмашылықтар бар екені анықталды. Бұл жаңалық – жануарлар клеткасының цитоплазмасында информосома түрінде болатын ақпараттық РНҚ (аРНҚ) бар екенін көрсетті. Молекулалық биология саласындағы зерттеулер, әсіресе, Қазақстан Ғылым Академиясының молекулалық биология және биохимия институты ашылғаннан кейін (1983) дами түсті.
Өсімдік клеткасындағы информосомалар, яғни, бос цитоплазмалық, полисомды-байланысқан және ядролы белоктардың (РНҚ-ны қоса) және төменгі молекулалы РНҚ-ның физика-химиялық қасиеттері зерттеліп, олардың өсімдік эмбриогенезі мен дамуы кезінде белок биосинтезі мен биогенезін реттеуге қатысатыны анықталды. Соның нәтижесінде функционалды белсенді әркелкі (гетерогалды) будан рибосомалары құрастырылды. Бұрын белгісіз болып келген өсімдік клеткаларындағы (қалыпты және стресс жағдайында) зат алмасу процесінің маңызды бөліктеріндегі (азотты, көмір сулы, фенолды) ферментті кешендердің реттелу механизмі ашылды. Бұл техникалық және астық дақылдарының бағалы шаруашылық белгілерін қалыптастыру бағытының ғылыми негізін салуға мүмкіндік берді. Азот алмасу кезіндегі маңызды ферменті – НАДФ-ГДГ-ны (никотинамидадениндинуклеотидфосфат-глютаматдегидрогенез) активациялаудың жаңа жолы анықталды. Қазақстан өсімдіктерінен жасалынған биологиялық активті заттардың биотехнологиясы жетілдірілді. Қазір республикада молекулалық биология саласы бойынша: геномды құрастыру, экспрессиясы және оның реттелуі, клетканың маңызды полимерлері белок пен нуклеин қышқылының құрылымы мен қызметі, өсімдіктердің гендік инженериясы, молекулалық иммунология мәселелері зерттелуде.
Өзін- өзі тексерудің сұрақтары:
1 Молекулалық биология пәні нені оқытады?
2 Молекулалық биологияның міндеті зерттеу әдстері
Әдебиеттер: 7.1.1-7.1.7( негізгі), 7.2.8- 7.2.16 (қосымша)
1 Модуль Молекулалық биологияның пайда болуының қысқаша тарихы және дамуының негізгі кезендері
№ 2 дәріс тақырыбы. Молекула аралық қарым-қатынас және олардың тірі жүйеде қызмет етудегі рөлі. Сигналдық қарым-қатынастардың жасуша аралық және жасуша ішілік механизмдері.
Дәріс жоспары:
Молекулалық биологияда қолданылатын әдістер.
Ағзадағы химиялық сигнал беру.
Ақуыз - ақуыздық қарым-қатынас және олардың жасуша үстілік құрылымдардың және ақуыз-мультимерлердің өзіндік жинақталуындағы мәні.
Клетка аралық химиялық сигнал беру және оның типтері.
Пайдаланатың құралдар: проектор, слайдтар
Микроскопия әдісінің тарихы XVII ғасырдан басталады. 1611 жылы Й.Кеплер жарық микроскопын жасау принципін ұсынды, ал алғаш рет 1638 жылы А.Левенгук жарық микроскопы көмегімен бірклеткалы бактерияларды бақылады. Дәл осы шешуші қабілеті 0,4-0,7 мкм-ге дейін болатын жарық микрокопы М.Шлейден мен Т.Шваннға 1838 жылы жасуша теориясын ашуға мүмкіндік берді. Микроскопияның дамуында интерференциялы, фазалы-контрастты, электронды микроскоптардың ашылуы маңызды кезеңдер болды.
Электронды микроскоп шешуші қабілеті 0,1 нм-ге дейін болады, осының арқасында вирустардың, клеткаішілік оганеллалардың, ақуыз-нуклеинді комплекстердің құрылымын зерттеуге мүкіндік береді.
Рентгенқұрылымдық талдау әдісі– рентген сәулелерінің дифракциясына негізделген; цитоплазма мен ядроның құрамына кіретін ақуыздардың, нуклеин қышқылдарының және басқа заттар молекулаларының құрылысын зерттеу үшін қолданылады. Бұл тәсіл молекулалардың құрамындағы атомдардың кеңістіктегі орналасуын анықтауға, олардың ара қашықтықтарын өлшеуге мүмкіндік береді. Билоогиялық маңызды молекулаларды, әсіресе ақуыз немесе нуклеин қышқылдарының молекулаларына құрылымдық талдау жасау көптеген қиындықтармен жүреді, себебі олардың құрамындағы атомдардың саны өте көп. Аталған молекулалардың сырт пішінін анықтаудың биологиялық функцияларды білу үшін маңызы өте зор.
Рентгенқұрылымдық талдау әдісінде зерттелетін объектіге (гемоглобиннің, ДНҚ-ң кристалдары) рентген сәулелері бағытталып, пайда болған дифракциялық бейнесі фотоппленкаға тіркеледі. Бұл әдістің көмегімен ақуыз, ДНҚ, РНҚ молекулаларының құрылымы жөнінде мәліметтер алынды.
Радиоактивті изотоптар – тірі клеткадағы ақуыз, нукленин қышқылдары, көмірсу және т.б. молекулаларды зерттеу үшін қолданылады. Рабиоактивті молекулалар мынадай алуан түрлі клеткаішілік процестерді зерттеу кезінде қолданылады: молекулалардың өздерінің ізашарларынан синтезделуі, молекулалардың клеткаішілік локализациясын, олардың жұмыс істеу уақыттарын, макромолекулалардың жекелеген аймақтарындағы химимялық өзгерулерін анықтау.
Ультрацентрифугалау – 1926 жылы Т.Сведберг аналитикалық центрифуганы ашқан соң кең қолданысқа ие болды. Клетканың тығыздығы әртүрлі болып келетін компоненттерін центрифугалау тәсілі арқылы бір-бірімен қоспай белек зерттеуге болады. Аналитикалық центрифуга көмегімен Т.Сведберг гемоглобиннің молекулалық массасын анықтады. 40-50 жылдары А.Клоди мен Ж.Браше клетка органеллаларын бөліп алуға арналған дифференциалды центрифугалау әдісін жасады, бұл әдіс көмегімен Де Дюв алғаш рет 1953 жылы лизосоманы кейін пероксисоманы бөліп алды.
Храматография. Қазіргі уақытта храматографияның көптеген нұсқалалры бар, мысалы әртүрлі типтегі матрикстерді (тасымалдаушыларды) қолданатын, ақуызды зарядына байланысты (ионалмасу храматография), молекулалар мөлшеріне байланысты (гель-храматография) немесе матрикспен аздаған байланыстағы заттардың химимялық топтарымен ерекше өзара әрекеттістіктеріне ажыратуға мүмкіндік беретін және т.б.
Электрофорез – бұл әдістің негізінде белгілі бір оң немесе теріс зарядтар жиынтығына ие ақуыздардың молекулаларының пішіні мен көлемі, зарядының мөлшеріне сәйкес элетрлік жазықтықта қозғалу қабілеті жатыр. Электрофорезді сулы (буферлік) ерітіндіде, крахмалды, агарлы, полиакрилді-амидті гелде, целлюлозалы, нитроцеллюлозалы пластинкаада жүргізуге болады. Электрофорез әдісінде ДНҚ-ны гельмен беті жабылған пластинкаға орналастырады. Мұнда көлемі жағынан кішкене бөліктер ірі бөліктерге қарағанда жылдам ауысады. Он шақты нуклеотидтері бар мини-сателлиттер арнайы радиоактивті «зондтар» аркылы бөлініп алынады.
Клетка өсінділері (культуралары) әдісі. Кейбір ұлпаларды жеке-жеке клеткаларға бөлгеннен кейін, жекеленген клеткалар өз тіршіліктерін жалғастырады, тіпті көбею қасиетін жоғалтпайды. Эмбрион немесе кейбір жеке клеткалар қолайлы ортада ағзадан тыс өсіп, көбейе алатындығын алғаш рет американ эмбрилогы Р. Гаррисон (1879-1959) дәлелдеген. Клетканы культуралау техникасын әрі қарай дамытқан француз биологы А. Каррель (1873-1959) болды.
Бұл әдістің ең қарапайым тәсілі келесідей: қоректік ортаға толы камераға тірі ұлпаның кесегі салынады. Біраз уақыт өткеннен кейін ұлпа кесегінің шетіндегі клеткалар бөлініп өсе бастайды. Өзге жағдайда ұлпаның кесілген кішкентай кесегі трипсин ферменті немесе хелатон версен ферменті ерітінділерімен сәл өңделеді, бұл клеткалардың толық бытырап кетуіне әкеп соғады. Содан соң клеткаларды шайып қоректік ортаға салады, онда клеткалар тұнбаға түседі де, шыныға жабысып көбейе бастайды, алдымен олар колониялар түзеді, соңынан клеткалық қабат түзеді.
Осылай тірі кезінде бақылауға ыңғайлы, бірқабатты клеткалар өсіндісі алынады. Өсінді өсіру кезінде қоректік ортадан басқа температура, стерильділік сияқты факторлар ескерілген жөн. Культурада өсімдік клеткаларын өсіруге болады.
Көп клеткалы организмдердің эволюциясы клеткалардың бір-бірімен байланыс ұстап тұру қабілеттеріне негізделген. Бұл қабілет клетка дамуын реттеу үшін және олардың ұлпаларда ұйымдасуы үшін, клетканың өсуі мен бөлінуін бақылау үшін және олардың әртүрлі белсенділіктерінің үйлесімділігі үшін қажетті. Клеткааралық іс-қимылдың негізгі маңызы мен күрделілігі жоғары сатыдағы жануарларда барлық гендердеің маңызды бөлігі осы процестермен байланысты деп болжауға мүмкіндік береді.
Клеткалар бір-бірімен үш түрлі жолмен байланысады: олар әртүрлі қашықтықта орналасқан клеткаларға сигналдар жеткізуші химиялық заттар бөліп шығарады; плазмалық мембранамен байланысқан, басқа клеткаларға әсер ететін, басқа клеткалармен тікелей жалғастыратын молекулалық сигналдар шығарады;екі клтеканың цитоплазмасын тікелей байланыстыратын жалғамалар құрады.
Химиялық сигнализацияның үш типі белгілі: дене клеткаларының көпшілігі локальды (жергілікті) химиялық медиатор болып табылатын бір немесе бірнеше сигналды заттар бөліп шығарады, олар өте тез бұзылып, сіңіріліп кететіндіктен тек жақын орналасқан клеткаларға әсер етіп қана үлгереді; маманданған эндокринді клеткалар гормондар бөліп шығарады. Гормондар қанға аралысып, нысана клеткаларға әсер етеді. Нысана-клеткалар организмнің әртүрлі бөлімдерінде кездесуі мүмкін; жүйке клеткалары өздерінің нысана-клеткалары арқылы маманданған жалғамалар (химиялық синапстар) жасайды және тек өте жақын қашықтықтағы клеткалармен әрекеттесетін, тек бір ғана нысана-клеткаға әсер ететін химиялық заттар – нейромедиаторлар бөліп шығарады.
Эндокринді және жүйке клеткалары химиялық сиганлизацияға арналған, олар жоғары сатыдағы жануарлардың денесін құрайтын миллиардтаған клеткалар белсенділігінің әр алуан түрлерін бірлесіп үйлестіріп тұрады.
Нерв клеткалары ақпаратты эндокринді клеткаларға қарағанда жылдам жеткізеді, олар сиганлдарды алыс қашықтыққа жеткізу үшін диффузия мен қан ағысына мұқтаж емес, сигнал нерв талшықтары арқылы электрлік импульстер түрінде жылдам өткізіледі. Тек нейромедиаторлар бөлініп шығатын нерв түйіндерінде бұл импульстар химиялық синапстарға айналады. Нейромедиатор нысана-клеткаларды микроскопиялық қысқа қашықтыққа бірнеше миллисекунд ішінде диффузиялық жолмен жекізеді. Қан ағысында гормондар өте қатты сұйылғанда және әдеттен тыс төмен концентрацияда әрекет етуі тиіс болған кезде, нейромедиаторлардың сұйылуы маңызды емес және олардың концентрациясы нысана-клетканың белгілі бөлімдерінде жоғары болуы да мүмкін.
Гипоталамус – эндокринді жүйенің негізгі реттеушісі. Мидың белгілі бөлімінде – гипоталамуста нерв жүйесі және эндокриндік жүйе физикалық және функционалдық жағынан бір-бірімен байланысады. Гипоталамус гипофиздің тура артында орналасқан және онымен гипофиз сабақшасы арқылы байланысқан. Гипоталамус өзінің негізгі қызметін нейрондар мен эндокринді клеткалардың ерекшеліктеріне бірдей ие клеткалар (олардың бір мезетте электрлік импульстерді өткізетін және қанға сигналдық молекулаларды бөліп шығаруға қабілетті өсінділері бар) көмегімен жүзеге асырады. Мұндай клеткаларды нейросекреторлы клеткалар деп атайды. Гипоталамустың нейросекреторлы клеткалары мидың жоғарғы бөлігінің нейрондарының қолдауы нәтижесінде гипофиз сабақшасының қан тамырларына белгілі пептидті гормон бөліп шығарады, ол гипофизбен басқа бір гормонның секрециясын ынталандырады немесе тежейді.
Гипоталамустың бақылауында болатын гипофиздің көпшілік гормондары қандай да бір басқа эндокринді безді ынталандырып (қолдап) қанға үшінші бір гормонның бөлініп шығуына себеп болады. Олай болса, гипоталамус эндокринді жүйенің негізгі реттеушісі болып табылады.
Әртүрлі клеткалар бірдей химиялық сигналдарға әртүрлі жауап қайтарады. Клеткалардың белгілі клеткаішілік сигналдық молекулаларға жауап қайтару қабілеті оларды молекулалармен байланыстыратын белок-рецепторлардың болуымен байланысты. Ересек жануарлардың көпшілік клеткалары қандай да бір қызмет атқаруға маманданған және олар барлық химиялық сигналдарға жауап беруге мүмкіндік беретін, осы қызметті іске асыратын және өңдейтін өзіндік рецепторлар жиынтығына ие.
Көпшілік химиялық сигналдардың нысана-клеткаларға әсер етуі ең ақырында онда жүріп жатқан белок синтезінің жылдамдығының немесе қасиетінің өзеруіне, не болмаса жаңа белоктардың синтезінің басталуыныа әкеледі. Әртүрлі нысана-клеткаларда сигналдық молекулалар жиі-жиі әртүрлі белоктармен жанасып, әртүрлі әсерлер көрсетеді. Ацетихолил қаңқа бұлшықеттері клеткаларының жиырылуын жылдамдатады, бірақ жүрек бұлшықеті клеткаларының жиырылу күші мен жиілігін баяулатады.
Клетканың өмірі физикалық әсерлер (температура, электромагниттік сәулелену) немесе химиялық қосылыстар сияқты сыртқы реттеуші сигналдарға немесе клеткалық сигналдарға тәуелді. Организм клетканың тіршілік әрекетін реттеу үшін қолданатын, жақсы зерттелген заттарға, мысалы, стероидты гармондар, цитокиндер немесе өсу факторлары жатады. Олар нысана-клеткаларға жетісімен гендер тобының дәлдігінің өзгеруімен байланысты зат алмасу өзгерістерін туғызады. Шығу тегі экзогенді болып табылатын феромондер немесе токсиндер біршама күшті және ерекше жауап туғызады. Қоршаған ортадағы, соның ішінде, организмдегі басқа клеткалар келген сигналдарға сәйкес жауап қайтару үшін клетка оларды қабылдап, осы сигналдар арқылы алынған нұсқауларға сәйкес өз жағдайын өзгертуі тиіс.
Алынған сигналдарға байланысты клетка бірнеше міндеттерді орындауы тиіс: 1) сигналды басқа сигналдардан ажырата білу; 2) оны нұқауға сай жеткізу; 3) Қабылданған сигналға сәйкес жауап қайтару; 4)Сигнал клетканы қоршаған ортадан жоғалған соң бірден жауап қайтару жүйесінің жұмысын тоқтату.
Сигналды нұсқауға сай жеткізу қиындықтарға байланысты. Келген сигнал әлсіз болса оны клетка ішіндегі клеткаішілік қабылдағыштар қабылдауы үшін клтка оны күшейтуі тиіс. Клетка бұл мәселені сигналды күшейтудің каскадты (сарқылмайтын) механизмі арқылы шешеді. Сигналды молекулалар арқылы тасымалданатын сигналдарға жауап ретінде клеткада жүретін биохимиялық реакциялардың каскадтарына қатысты бірінші реттік болып табылады.
Сигналдың тасымалдануы бұл нәтижесінде рецепторлардың клеткаішілік домендердегі жағдайының өзгеруімен аяқталатын, рецепторлардың белсенділігін туғызатын клетка сыртындағы лигандалардың (сигналды клеткалар) клетка бетіндегі рецепторлармен әрекетін іске қосатын реакциялар тізбегі. Рецептордың белсендірілуі нәтижесінде клетка сыртқы сигналдарға үйлесімді жауап қайтарады.
Клетка бірінші реттік сигналдарды бірінші реттік сигналды молекулалармен немесе физикалық факторлармен әрекеттесетін белок тәріздес арнайы маманданған моллекула-рецепторлардың көмегімен тани алады. Бірінші реттік сигнал негізінде өзі реттеуі тиіс болған клеткадағы зат алмасу процестеріне бірден әсер етпейді. Оны қабылдаған рецептор клеткада клетка сыртындағы бірінші реттік сигналдар әсер етуі тиіс болған процестерді жүргізетін аралық химиялық қосылыстардың түзілуіне бастама береді.
Мұндай аралық қосылыстар өздерінде бірінші реттік реттеуші сигналдар туралы ақпарат сақтап, олардың екінші тасымалдаушысы болып табылады, сондықтан оларды екінші мессенджерлер деп атайды. Екінші реттік мессенджерлер клетка сыртындағы молекулалардан келген бірінші реттік реттеуші сигналдарды күшейтуге мүмкіндік береді. Клеткалар мен ұлпалар топтары бірінші реттік реттеуші сигналдарға, мысалы, эндокринді бездердің гормондары әсеріне бір уақытта және біртектес жауап қайтару қабілетіне ие. Бұл көпклеткалы организмдердің ішкі және сыртқы өзгермелі жағдайларға тез бейімделуіне мүмкіндік береді
Сигналдардың берілуі мен күшейтілуі механизмін зерттеу маңызды міндеттердің бірі болып табылады. Бұларды білу қалыпты жағдайда клетканың функционалды жауабының қалыптасуы, патологиялық жағдайларда реттелуі мен түзелуі механизмдерін түсінуге мүмкіндік береді.
Қазіргі уақытта 50-ге жуық белок-лигандалар, рецепторлардың 14 тұқымдасы белгілі.
Клетка бетіндегі сигналдың клетка ішіне берілуінің бірнеше стандартты жолы бар, бірақ бұл мәселе әлі нақты түсініктен алысырақ және үнемі сигнализацияның жаңа нұсқалары туындап отырады. Мысалы, сигнал берілуінің классикалық жинақталған жолы мына әрекеттер тізбегімен аяқталады: сигналды молекула-клетка бетіндегі рецептор-клеткаішілік күшейткіш механизм-берілген сигналға арнайы маманданған геннің қосылуы.
Кейбір сыртқы факторлардың клетка бетіндегі рецепторлармен әрекеттесуінен басталатын көп сатылы сигнал берілу процесінің мүмкін болған екі қарапайым сызбасы мына суретте көрсетілген. Мұндай сыртқы факторлар қандай да бір гормон немесе өсу факторы болуы мүмкін.
Бірінші реттік реттегіш сигнал келтка ядросына жетіп ондағы нысана-клеткааның экспрессиясына (айқындылығына) әсер ету үшін, ол екі қабатты клетка мембранасы арқылы өтуі тиіс. Бұл қоршаған ортадағы сигналдарды ерекше таңдап, олардың жағдайын танитын клетка бетіндегі табиғаты белок тектерецепторлардың арқасында жүзеге асады. Төменгі молекулалы реттегіштер мембрана липдінде еритін, гидрофобты химиялық қосылыстар (мысалы, стероидты гормондар) болса, олардың өткізілуі үшін рецепторлар қолданылмайды, олар клеткаға диффузия жолымен өтеді. Клетка ішінде бұндай қосылыстар белок тектес рецепторлармен ерекше әрекеттесіп, түзілген комплек ядроға көшіріледі.
Клетка бетіндегі сигнал оның ядросына көптеген молекулалардың қатысуымен беріледі. Осы сигналды тізбектің бір компонентінің бұзылуының өзі клетканың оны қоршаған ортадағы сигналдарға реакциясының бұзылуына әкеліп соғады. Мысалы, өсу факторларын артық өндіруге себепші болатын мутациялар. Мұндай мутация алған клетка өзінің өсуін, сонымен қатар басқада қоршаған клеткалардың өсуін жылдамдатуы мүмкін. Өсудің жылдамдауы өсу факторлары рецепторларындағы мутация себебінен жұзеге асуы да мүмкін. Мұндай жағдайда мутантты рецептор клетка ішіне өсу факторлары жоқ, өсуді жылдамдатушы сигналдарды өткізе бастайды. Клетка организмнің талаптарына байланыссыз жөнсіз бөліне бастайды.
Достарыңызбен бөлісу: |