В. Н. Медведская Методика начального обучения математике в тестах



бет5/7
Дата28.01.2022
өлшемі496,5 Kb.
#115398
1   2   3   4   5   6   7
Байланысты:
Тесты по методике преподавания математики


ЧАСТЬ А
Найдите один неправильный ответ, а в случае его отсутствия

укажите: «Неправильного ответа нет».


А 1. Изучение геометрического материала способствует:

1) развитию пространственного воображения;

2) развитию мыслительных действий (анализ, синтез, сравнение, обобщение, абстрагирование, классификация);

3) формированию умения выполнять логические действия (подводить под понятие, выводить следствия);

4) подготовке к изучению геометрии в средних классах;

5) формированию графических умений и навыков;

6) неправильного ответа нет.
А 2. При изучении геометрического материала используются следующие виды заданий:

1) счет количества геометрических фигур или их элементов;

2) построение геометрических фигур на клетчатой бумаге с помощью линейки и угольника;

3) построение углов с помощью транспортира;

4) выяснение формы реальных предметов или их частей;

5) разбиение фигур на части и составление одних фигур из других;

6) чтение геометрических чертежей с буквенными обозначениями.
А 3. В соответствии с программными требованиями младшие школьники должны овладеть умениями:

1) называть изображенные геометрические фигуры;

2) указывать объекты, имеющие заданную геометрическую форму;

3) формулировать определения геометрических понятий;

4) выполнять построения по образцу;

5) конструировать модели геометрических фигур из палочек, полосок, веревки, пластилина и т.п.;

6) неправильного ответа нет.

А 4. В геометрии определяемыми являются понятия:

1) отрезок; 2) луч; 3) прямая;

4) угол; 5) окружность; 6) ломаная.


А 5. В начальном курсе математики неопределяемыми являются понятия:

1) точка; 2) прямая; 3) кривая; 4) окружность;

5) многоугольник; 6) равносторонний треугольник.
А 6. Требованиям программы начальной школы соответствуют вопросы: “Что такое…?”

1) прямой угол; 2) прямоугольный треугольник;

3) прямоугольник; 4) квадрат;

5) равносторонний треугольник; 6) остроугольный треугольник.

А 7. Наиболее продуктивными методами изучения геометрического материала являются:

1) объяснительно-иллюстративный; 2) проблемное изложение;

3) частично-поисковый; 4) моделирование;

5) практическая работа учащихся; 6) эвристическая беседа.


А 8. Формирование первоначальных геометрических представлений осуществляется с помощью методических приемов:

1) материализации геометрических объектов;

2) варьирования их несущественных признаков;

3) классификации геометрических фигур;

4) вычленения новой геометрической фигуры из другой;

5) сопоставления;

6) противопоставления.
А 9. При формировании геометрических понятий необходимо обратить внимание детей на то, что форма фигуры не зависит от:

1) материала, из которого они сделаны;

2) цвета;

3) расположения на плоскости или в пространстве;

4) размеров;

5) отношений между элементами, образующими данную фигуру;

6) неправильного ответа нет.
А 10. Опытно-экспериментальным путем устанавливаются существенные признаки следующих понятий:

1) точка; 2) прямой угол; 3) острый угол;

4) тупой угол; 5) круг; 6) многоугольник.
А 11. Методический прием противопоставления полезно применять при введении понятий:

1) прямая и кривая; 2) точка и треугольник;

3) отрезок и ломаная; 4) круг и окружность;

5) прямая и луч; 6) неправильного ответа нет.


А 12. Младшие школьники знакомятся с классификацией множеств:

1) углов; 2) треугольников; 3) многоугольников;

4) окружностей; 5) прямых; 6) неправильного ответа нет.
А 13. Решение элементарных задач на построение используется в качестве методического приема выявления существенных признаков следующих понятий:

1) отрезок; 2) луч; 3) окружность;

4) квадрат; 5) ломаная; 6) прямая.
А 14. Осознанию существенных признаков прямоугольника способствуют упражнения вида:

1) распознавание среди других фигур;

2) узнавание по перечислению этих признаков;

3) составление прямоугольника из других геометрических фигур;

4) разбиение прямоугольника на части;

5) построение прямоугольника с помощью чертежного треугольника;

6) неправильного ответа нет.
А 15. «Открытие» свойства противолежащих сторон прямоугольника может быть организовано путем:

1) вычисления его периметра;

2) перегибания;

3) измерения;

4) сравнения с отрезком-посредником;

5) сообщения учителя;

6) неправильного ответа нет.
А 16. Для сравнения величины углов в начальных классах можно использовать способы:

1) на глаз; 2) накладывание; 3) прикладывание;

4) укладывание модели угла-посредника и счет;

5) cравнение с моделью прямого угла;

6) неправильного ответа нет.
А 17. Разграничению понятий «окружность» и «круг» способствуют упражнения вида:

1) назвать точки, принадлежащие кругу или только окружности;

2) обозначить несколько точек, принадлежащих кругу, но не принадлежащих окружности;

4) провести два радиуса и измерить их;

5) закрасить круг желтым карандашом;

6) обвести окружность красным карандашом.


А 18. Осмыслению сущности координатного метода на прямой способствуют упражнения вида:

1) c опорой на числовую ленту назвать числа, которые меньше (больше), чем заданное число;

2) с опорой на числовую ленту сравнить числа 12 и 21, 28 и 32, и т.п.;

3) на заданном числовом луче отметить точку, обозначающую число 9, 15, 21, 28, 32 и другие;

4) построить отрезок, длина которого на 5 см больше длины данного;

5) выполнить чертеж к задаче на движение;

6) неправильного ответа нет.
А 19. Осмыслению сущности координатного метода на плоскости способствуют упражнения вида:

1) охарактеризовать местоположение фигур, размещенных по строкам и столбцам прямоугольной таблицы;

2) разложить фигуры в прямоугольной таблице соответственно указанным для ее строк и столбцов признакам;

3) игра «Проложи маршрут» перемещения, например, красного круга из левого нижнего угла прямоугольной таблицы в правый верхний угол;

4) игра «Как движется улитка?», где от учащихся требуется описать маршрут улитки, заданный ломаной линией на координатной плоскости;

5) построить многоугольник по образцу, заданному на координатной плоскости;

6) неправильного ответа нет.
А 20. Вывод формулы (правила) вычисления площади прямоугольника организуется учителем посредством применения методов:

1) измерения (длин сторон);

2) практическая работа (разбиение прямоугольника на квадратные сантиметры); 3) проблемное изложение; 4) частично-поисковый;

5) эвристическая беседа; 6) неправильного ответа нет.

А 21. Уровню геометрической подготовки младших школьников соответствует требование провести дедуктивное доказательство:

1) перпендикулярности смежных сторон прямоугольника;

2) параллельности противолежащих сторон прямоугольника;

3) «ABC – равнобедренный»; 4) «ABC – остроугольный»;

5) «квадрат – это прямоугольник»; 6) неправильного ответа нет.
А 22. Простейшие дедуктивные доказательства способствуют:

1) углублению подготовки младших школьников к изучению систематического курса геометрии;

2) систематизации имеющихся у учащихся знаний по геометрии;

3) формированию пространственных представлений;

4) усвоению существенных признаков геометрических фигур;

5) развитию логического мышления и речи детей;

6) неправильного ответа нет.
А 23. Геометрические фигуры являются средствами обучения при:

1) формировании навыка счета;2) моделировании разрядных единиц;

3) ознакомлении с понятиями «доля» и «дробь»;

4) доказательства утверждений вида 1/2 > 1/3;

5) обосновании выбора арифметического действия для решения простых задач на нахождение доли числа, числа по его доле;

6) неправильного ответа нет.


А 24. Формированию понятия «доля» способствуют упражнения:

1) разрезание реальных объектов (яблоко, торт) на равные части;

2) деление бумажных полосок, кругов и т.п. на равные части;

3) совмещение путем наложения нескольких моделей прямого угла;

4) сравнение двух одинаковых фигур, одна из которых разбита на равные части, а другая на столько же неравных частей;

5) составление геометрических фигур из одинаковых заготовок;

6) раскрашивание соответствующей части геометрической фигуры.
А 25. Пониманию конкретного смысла доли и дроби способствуют упражнения вида:

1) показать 1/2, 3/4 круга; 2) построить 1/4, 1/8 отрезка;

3) записать число, соответствующее закрашенной части квадрата;

4) с опорой на рисунок объяснить, что обозначают записи дробей;

5) построить отрезок, 1/2 которого равна 3 см;

6) сложить дроби, например, 1/2 и 1/4.

ЧАСТЬ Б
Среди предложенных вариантов ответов укажите один правильный
Б 1. В начальной школе свойство сторон квадрата устанавливается путем:

1) перегибания квадрата по диагоналям;

2) вычисления его периметра;

3) вычисления площади квадрата;

4) сообщается самим учителем;

5) измерения длин сторон;

6) правильного ответа нет.
Б 2. Открытие учащимися формулы (правила) вычисления площади квадрата осуществляется методом:

1) неполной индукции;

2) аналогии;

3) дедукции;

4) практической работы;

5) наблюдения;

6) правильного ответа нет.
Б 3. Учащиеся начальных классов должны сравнивать доли и дроби со знаменателями, не превышающими числа 10, посредством сравнения:

1) числителей;

2) знаменателей;

3) моделей заданных дробных чисел, представленных в виде частей разных геометрических фигур;

4) моделей заданных дробных чисел, представленных в виде частей одной и той же геометрической фигуры;

5) воображаемых моделей заданных дробных чисел;

6) правильного ответа нет.

ЧАСТЬ В
Заполните пропуски, если они есть в задании.


В 1. С многоугольниками разных видов учащиеся знакомятся при изучении чисел . . .

В2. Запишите порядковые номера указанных понятий так, чтобы каждое последующее понятие было видовым по отношению к предыдущему:

1) квадрат;

2) прямоугольник;

3) многоугольник;

4) четырехугольник;

5) множество точек.
В 3. С целью усвоения детьми . . . геометрических понятий учитель проводит игры: «Убери лишнюю фигуру», «Назови имя».
В 4. Какой методический прием использует учитель, предлагая учащимся модели треугольников, отличающиеся друг от друга величиной углов, длинами сторон, материалом, из которого они изготовлены?
В 5. Система упражнений видов: 1) фактическое или мысленное разрезание фигур на части указанной формы; 2) конструирование многоугольников из их частей; 3) подсчет, например, количества треугольников, входящих в состав заданной фигуры, способствует формированию у детей . . .
В 6. Задания на выполнение вслух простейших дедуктивных доказательств младшим школьникам можно предлагать только при условии, что они изучали и знают соответствующие . . .
В 7. Прием деления многоугольников или отрезков на равные части и вычленение одной или нескольких таких частей используется при введении понятий . . .

ТЕСТ «МЕТОДИКА ИЗУЧЕНИЯ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА»


Ч А С Т Ь А
Найдите один неправильный ответ, а в случае его отсутствия

укажите: «Неправильного ответа нет».


А 1. Задачами изучения алгебраического материала в начальном курсе математики являются:

1) связь обучения с жизнью;

2) развитие у учащихся таких логических приемов, как анализ и синтез, обобщение и конкретизация, индукция и дедукция;

3) развитие у детей теоретического типа мышления, т.е. мышления, направленного на обобщение, на открытие законов и зависимостей;

4) обобщение знаний о числах, свойствах арифметических действий;

5) усиление преемственности обучения математике на разных ступенях школьного образования;

6) неправильного ответа нет.
А 2. Алгебраическое содержание курса математики составляют:

1) числовые выражения; 2) числовые равенства и неравенства;

3) буквы латинского алфавита;

4) переменная и выражения с переменной;

5) уравнения; 6) неравенства с переменной.
А 3. В виде числового выражения можно записать:

1) результат счета множества предметов;

2) результат сравнения двух множеств по их численности;

3) каждое из четырех арифметических действий;

4) план решения простой задачи;

5) план решения составной задачи;

6) неправильного ответа нет.
А 4. Изучать числовые выражения – это значит учиться:

1) читать и записывать числовые выражения;

2) вычислять их значение;

3) сравнивать два выражения;

4) составлять выражения по иллюстрациям, по тексту задач, по схеме и другим признакам;

5) выполнять равносильные преобразования числовых выражений;

6) неправильного ответа нет.

А 5. Выражение 4 + 6 можно прочитать:

1) четыре да еще шесть;

2) к четырем прибавить шесть;

3) четыре плюс шесть;

4) первое слагаемое 4, второе слагаемое 6;

5) как найти сумму чисел 4 и 6;

6) четыре увеличить на 6.


А 6. Выражение 12 : 3 можно прочитать:

1) 12 разделить на 3; 2) делимое – 12, делитель – 3;

3) частное чисел 12 и 3; 4) 12 уменьшить в 3 раза;

5) как узнать, во сколько раз 12 больше чем 3;

6) неправильного ответа нет.
А 7. Чтение числовых выражений разными способами способствует:

1) обобщению знаний о смысле арифметических действий;

2) запоминанию названий компонентов и результатов арифметических действий;

3) развитию математической речи учащихся;

4) заблаговременной подготовке к решению уравнений;

5) подготовке к решению неравенств с переменной;

6) неправильного ответа нет.
А 8. Каждое математическое выражение можно прочитать следующими способами:

1) называя математические символы;

2) называя математические термины;

3) называя числовое значение выражения;

4) раскрывая смысл арифметических действий;

5) раскрывая порядок выполнения арифметических действий;

6) неправильного ответа нет.
А 9. Для ознакомления учащихся с правилами порядка выполнения арифметических действий учитель может применить следующие методы и приемы обучения:

1) сообщение учителя;

2) индуктивный вывод;

3) самостоятельное чтение учащимися правила по учебнику;

4) проблемное изложение;

5) сравнение;

6) обобщение.

А 10. Закреплению правил порядка выполнения арифметических действий способствуют упражнения вида:

1) составить план решения примера;

2) вычислить значение сложного выражения;

3) не вычисляя, выполнить преобразование выражения;

4) построить граф-схему процесса вычисления;

5) составить выражение по граф-схеме;

6) записать решение составной задачи в виде выражения.


А 11. Закреплению правил порядка выполнения арифметических действий способствуют также упражнения вида:

1) прочитать сложное уравнение;

2) записать выражение под диктовку;

3) из нескольких заданных, сходных по несущественным признакам, выражений выбрать называемое учителем;

4) расставить знаки арифметических действий или скобки так, чтобы выражение имело заданное числовое значение;

5) вставить пропущенные в числовом выражении цифры;

6) объяснить план решения составной задачи по соответствующему числовому выражению.
А 12. Выражение а + в : с можно прочитать:

1) а плюс в разделить на с; 2) сумма числа а и частного чисел в и с;

3) первое слагаемое – а, второе слагаемое – частное чисел в и с;

4) число а увеличить на частное чисел в и с;

5) к числу а прибавить число в, уменьшенное в с раз;

6) неправильного ответа нет.


А 13. Выражение а : в + с можно прочитать:

1) а разделить на в и прибавить с;

2) число а разделить на сумму чисел в и с;

3) первое слагаемое – частное чисел а и в, второе слагаемое – с;

4) к частному чисел а и в прибавить с;

5) частное чисел а и в увеличить на с;

6) число а уменьшить в в раз и результат увеличить на с единиц.
А 14. Ознакомление младших школьников с выражениями со скобками методика рекомендует начинать с выражений типа:

1) к числу прибавить сумму; 2) к числу прибавить разность;

3) к разности прибавить число; 4) из числа вычесть сумму;

5) из суммы вычесть число; 6) неправильного ответа нет.

А 15. В начальном обучении возможны следующие подходы к введению выражений со скобками:

1) решение пары примеров на сложение и на вычитание, в которой второй пример является продолжением первого, и составление из них соответствующего выражения;

2) решение примера на вычитание с последующей заменой вычитаемого суммой двух чисел;

3) составление сложного выражения с помощью карточек, на одной из которых записано число, а на другой – сумма или разность;

4) объяснение учащимися выполненного в учебнике или на доске решения примера и высказывание догадки о том, что обозначают скобки и для чего их ставят;

5) замена выражением со скобками записи решения составной задачи по действиям;

6) неправильного ответа нет.
А 16. На уроке по теме «Запись выражений со скобками» учитель применяет следующие методы и приемы обучения:

1) проблемное изложение;

2) самостоятельная работа учащихся;

3) беседа; 4) аналогия;

5) сравнение; 6) наблюдение.
А 17. Уточнение представлений младших школьников о числовом равенстве и неравенстве осуществляется в практической деятельности:

1) вставить пропущенные в записи математические символы, наименование так, чтобы запись была правильной;

2) оценить правильность решения примера или исправить ошибки;

3) найти ошибки в плане решения уравнения;

4) закончить запись (например, 7 ∙ 5 = 7 ∙ 3 + . . .);

5) из двух данных выражений составить равенство или неравенство;

6) преобразовать выражение.
А 18. Правильно выполнено преобразование выражений:

1) 23 + 9 = (20 + 3) + 9 = 20 + 12 = 32;

2) 23 + 9 = 23 + (7 + 2) = 23 + 7 = 30 + 2 = 32;

3) 23 + 9 = (21 + 2) + 9 = (21 + 9) + 2 = 30 + 2 = 32;

4) 23 + 9 = 23 + (10 – 1) = 33 – 1 = 32;

5) 23 · 9 = (20 + 3) · 9 = 20 · 9 + 3 · 9 = 180 + 27 = 207;

6) неправильного ответа нет.
А 19. Правильно выполнено преобразование выражений:

1) а + (в – с) = (а + в) – с;

2) 52 + 29 = 52 + (30 – 1) = (52 + 30) – 1 = 82 – 1 = 81;

3) 52 – 29 = 52 – (30 – 1) = (52 – 30) + 1 = 22 + 1 = 23;

4) а – (в – с) = (а – в) – с;

5) 52 – 29 = 52 – (22 + 7) = (52 – 22) − 7 = 30 − 7 = 23;

6) 7 + 7 + 7 + 7 = 7 · 4.
А 20. При сравнении числовых выражений младшие школьники могут опираться на:

1) соответствующие предметные модели числовых выражений;

2) правила сравнения двух натуральных чисел;

3) представления о зависимости результатов арифметических действий от изменения его компонентов (например, 20 + 5 * 20 + 6);

4) знание отношений между результатами и компонентами арифметических действий (например, 20 – 5 * 20);

5) смысл действия умножения (например, 5 · 6 * 5 · 5 + 5);

6) неправильного ответа нет.
А 21. Понятие переменная в начальных классах моделируется с помощью:

1) пустых окошек; 2) пропусков в записи;

3) знака *; 4) букв латинского алфавита;

5) цифр; 6) кружочков.


А 22. Формированию у детей представлений о переменной способствуют упражнения видов:

1) вычисление значения буквенных выражений, когда указаны значения входящих в них букв;

2) заполнение прямоугольных таблиц в две или три строки, в которых арифметическое действие представлено в виде выражения с одной или двумя переменными (например, в – 2; а – в);

3) чтение геометрических чертежей (например, треугольник АВС, прямая ОМ, угол КМО);

4) запись в общем виде усвоенных ранее арифметических закономерностей (например, а – 0 = а, а + в = в + а) и их практическое применение;

5) решение неравенств с переменной способом подбора;

6) составление текстовых задач по буквенному выражению.

А 23. Подготовка к решению уравнений включает:

1) решение примеров с окошком;

2) сравнение выражений с переменной;

3) чтение числовых равенств с указанием названий компонентов и результатов арифметических действий;

4) чтение математических выражений по последнему действию;

5) усвоение правил нахождения неизвестных компонентов арифметических действий;

6) неправильного ответа нет.


А 24. Для ознакомления младших школьников с правилами а – 0 = а и а – а = 0 можно использовать следующие методы обучения:

1) неполная индукция; 2) обобщение; 3) дедукция;

4) аналогия; 5) моделирование; 6) проблемное изложение.
А 25. При выводе правила а + 0 = а в начальном курсе математики можно опираться на:

1) представление детей о числе 0;

2) действия с предметными множествами;

3) конкретный смысл сложения;

4) взаимосвязь сложения и вычитания;

5) наблюдение нескольких частных случаев вида 3 + 0 = 3;

6) неправильного ответа нет.
А 26. При выводе правила а – 0 = а в начальном курсе математики можно опираться на:

1) представление детей о числе 0;

2) действия с предметными множествами;

3) конкретный смысл вычитания;

4) взаимосвязь вычитания со сложением;

5) наблюдение нескольких частных случаев вида 5 – 0 = 5;

6) неправильного ответа нет.
А 27. В начальном обучении правило нахождения неизвестного слагаемого применяется для:

1) решения примеров вида 7 – ٱ = 2; 15 – 7;

2) решения текстовых арифметических задач;

3) решения уравнений;

4) проверки сложения;

5) проверки вычитания;

6) неправильного ответа нет.

А 28. В начальном обучении правило нахождения неизвестного уменьшаемого применяется для:

1) проверки сложения; 2) проверки вычитания;

3) запоминания таблицы сложения; 4) решения уравнений;

5) решения текстовых арифметических задач;

6) неправильного ответа нет.


А 29. В начальном обучении правило нахождения неизвестного множителя применяется для:

1) составления таблиц деления; 2) проверки деления;

3) проверки умножения;

4) решения текстовых задач с отвлеченными числами;

5) решения уравнений; 6) неправильного ответа нет.
А 30. В начальном обучении правило нахождения неизвестного делимого применяется для:

1) решения текстовых задач с отвлеченными числами;

2) решения уравнений; 3) запоминания таблиц деления;

4) проверки умножения; 5) проверки деления;

6) неправильного ответа нет.
А 31. Отрезок, разделенный на две части, где для обозначения целого и его частей используются числа и буквы латинского алфавита, является наглядной основой правильного выбора арифметического действия для решения уравнений:

1) на нахождение неизвестного первого слагаемого;

2) на нахождение неизвестного второго слагаемого;

3) на нахождение делимого; 4) на нахождение уменьшаемого;

5) на нахождение вычитаемого; 6) неправильного ответа нет.
А 32. Способ подбора для решения уравнений и неравенств с переменной выполняет в начальном обучении ряд дидактических функций по формированию у детей:

1) представления о переменной;

2) представлений об уравнении и неравенстве с одной переменной как одноместном предикате;

3) умения предвидеть границы допустимых значений переменной (какие числа стоит испытывать, а какие нет);

4) вычислительных умений и навыков;

5) умения решать задачи алгебраическим способом;

6) неправильного ответа нет.

А 33. Подготовкой к решению текстовых задач алгебраическим способом является распределенная во времени система заданий:

1) уравнивание двух множеств предметов; 2) сравнение чисел;

3) составление числового равенства по иллюстрации (например, чашечные весы находятся в равновесии);

4) преобразование числового неравенства в равенство (например, чашечные весы не находятся в равновесии);

5) составление по условию задачи всевозможных числовых выражений и объяснение их смысла;

6) составление уравнений по тексту задач с отвлеченными числами (например: «Неизвестное число на 7 больше , чем 103»).
Ч А С Т Ь Б
Среди предложенных вариантов ответов укажите один правильный.
Б 1. В соответствии с программными требованиями младшие школьники должны усвоить алгебраические понятия (термины) на уровне:

1) узнавания объектов изучения, обозначенных терминами;

2) запоминания терминов; 3) формального определения понятия;

4) понимания отличительных признаков понятия и правильного применения в своей математической речи соответствующих терминов;

5) включения в систему родственных понятий;

6) правильного ответа нет.


Б 2. Правила порядка выполнения арифметических действий в сложных выражениях – это:

1) утверждение, которое нужно доказывать;

2) следствие законов арифметических действий;

3) общепринятое соглашение, договоренность;

4) вывод, полученный путем наблюдений и обобщения;

5) требование программы по математике;

6) правильного ответа нет.
Б 3. Выражение а – в ∙ с можно прочитать:

1) а минус в умножить на с;

2) из числа а вычесть число в и умножить на число с;

3) разность чисел а и в умножить на с;

4) число а уменьшить на произведение чисел в и с;

5) число а уменьшить на в и увеличить в с раз;

6) правильного ответа нет.

Б 4. Впервые с числовыми равенствами и неравенствами учащиеся начальных классов встречаются при сравнении:

1) двух предметных множеств по их численности, когда выполняется соответствующая запись на математическом языке;

2) двух однозначных чисел; 3) суммы и числа;

4) двух сумм; 5) суммы и разности; 6) двух разностей.
Б 5. С ошибкой выполнено преобразование выражения:

1) 18 · 3 = (10 + 8) · 3 = 30 + 24 = 54 ;

2) 45 + 38 = (40 +5) + (30 + 8) = 40 + 30 = 70 + 13 = 83;

3) 84 – 7 = 84 – (4 + 3) = 80 – 3 = 77;

4) 42 : 14 = 42 : (7 ∙ 2) = (42 : 7) : 2 = 6 : 2 = 3;

5) 4600 : 200 = 4600 : (2 · 100) = (4600 : 100) : 2 = 46 : 2 = 23;

6) правильного ответа нет.
Б 6. С ошибкой выполнено преобразование выражения:

1) а : (в : с) = (а : в) · с;

2) 480 : (4 · 10) = 48 : 4 = 12;

3) (а + в) – с = (а – с) + в = а + (в – с);

4) 19 – 5 = (10 + 9) – 5 = 10 + (9 – 5) = 10 + 4 = 14;

5) 19 – 5 = (10 + 9) – 5 = (10 – 5) + 9 = 5 + 9 = 14;

6) правильного ответа нет.
Б 7. Переменная – это:

1) буква латинского алфавита; 2) место для заполнения;

3) окошечко; 4) звездочка; 5) многоточие;

6) правильного ответа нет.


Б 8. Первый способ решения уравнений, который применяют учащиеся начальных классов, это:

1) уравнивание двух множеств предметов; 2) подбор чисел;

3) с помощью графов; 4) сравнение двух выражений с переменной;

5) использование правил нахождения неизвестных компонентов арифметических действий;

6) равносильные преобразования заданного уравнения.
Б 9. Для ознакомления младших школьников с правилами а · 1 = а и а · 0 = 0 используется метод:

1) неполная индукция; 2) аналогия; 3) дедукция;

4) эвристическая беседа; 5) сообщение учителя; 6) наблюдение.
Б 10. Ведущим методом ознакомления младших школьников с правилами а : 1 = а и а : а = 1 является:

1) неполная индукция; 2) аналогия; 3) дедукция;

4) эвристическая беседа; 5) сообщение учителя; 6) наблюдение.
Б 11. Вывод правил а : а = 1 и а : 1 = а в начальных классах осуществляется с опорой на:

1) действия с предметными множествами;

2) конкретный смысл действия деления;

3) взаимосвязь деления с вычитанием;

4) взаимосвязь деления с умножением;

5) наблюдение нескольких частных случаев вида 6 : 6 = 1 и 6 : 1 = 6;

6) правильного ответа нет.
Б 12. Правило 0 · а = 0 в начальных классах выводится с опорой на:

1) переместительный закон умножения;

2) взаимосвязь умножения со сложением;

3) взаимосвязь умножения с делением;

4) действия с предметными множествами;

5) правило «На нуль делить нельзя»;

6) правильного ответа нет.
Б 13. Самым удобным примером – помощником для решения уравнений вида а – х = в является:

1) 5 – х = 3; 2) 15 – 12 = 3; 3) 18 – 9 = 9;

4) 18 – 6 = 12; 5) 7 – ٱ = 1; 6) 5 – 2 = 3.
Б 14. Учащиеся начальных классов реже всего ошибаются при решении уравнений вида:

1) а + х = в; 2) х – а = в; 3) а – х = в;

4) а · х = в; 5) а : х = в; 6) х : а = в.
Ч А С Т Ь В
Заполните пропуски, если они есть в заданиях.
В 1. В начальном обучении ни одно из алгебраических понятий не доводится до уровня . . . .
В 2. Обучаясь чтению математических выражений по плану: назови действие, которое выполняется последним; вспомни, как называются числа при выполнении этого действия; прочитай, чем они заданы в данном выражении, учащиеся одновременно закрепляют правила . . . .
В 3. Числовое равенство (неравенство) – это . . . , в которой два числовых выражения соединяются знаками: « = » (« > », « < »).
В 4. Доказать или опровергнуть истинность числового равенства (неравенства) можно путем выполнения не только арифметических, но и . . . действий.
В 5. Для первого знакомства с выражениями со скобками младшим школьникам следует предлагать числовые выражения в два . . . арифметических действия.
В 6. Преобразование математических выражений – это замена заданного выражения другим, имеющим то же . . . .
В 7. Запишите порядковый номер варианта ответа к заданию Б8, в котором назван основной способ решения простых и составных уравнений в начальных классах.
В 8. Основным способом решения неравенств с переменной в начальных классах является способ . . . .
В 9. Запишите в обобщенном виде два простых уравнения разного типа, для решения которых ученику дает подсказку пример – помощник 10 : 2 = 5.
В 10. Чтение уравнения с указанием названий компонентов и результатов арифметических действий дает ученику косвенную подсказку, какое . . . надо вспомнить.
В 11. Отрезок является моделью простых уравнений с действиями первой ступени. А какую геометрическую фигуру удобно использовать в качестве модели для простых уравнений с действиями второй ступени?
В 12. Предлагая учащимся сравнить уравнения х + 14 = 30, 30 – х = 14 и х – 14 = 30 и их решения, учитель использует в обучении методический прием . . . .



Достарыңызбен бөлісу:
1   2   3   4   5   6   7




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет