Ответ: 18…19. Тело Т лежит в 1-ом октанте и ограничено плоскостями координат и поверхностью Q, заданной уравнением . Вычислить:
а) поток поля вектора через поверхность, ограничивающую тело Т (воспользоваться формулой Остроградского);
в) циркуляцию поля вектора вдоль линии пересечения поверхности Q с плоскостями координат в направлении от точки пересечения Q с осью ОХ к точке пересечения Q с осью OY ( воспользоваться формулой Стокса): .
Решение.
а) Линии пересечения поверхности с координатными плоскостями.
С плоскостью XOY с плоскостью XOZ с плоскостью YOZ (см.рисунок). Поток поля через поверхность, ограниченную этими линиями находим по формуле Гаусса-Остроградского:
. Находим дивергенцию: . Тогда
в) Циркуляцию поля вектора вдоль линии вычислим по формуле Стокса: . Вычислим ротор данного поля:
. Найдём вектор : (это внешняя нормаль, так как ). Вычислим скалярное произведение: . Таким образом, циркуляция векторного поля равна:
. Ответ: .
Убедиться, что поле вектора потенциально, найти потенциал поля и вычислить работу при перемещении точки единичной массы из точки А в точку В: .
Вычислим ротор вектора :
. Следовательно, поле вектора является потенциальным. Восстановим потенциал поля: ( за точку M0взята точка M0(1, 1, 1)). Найдём работу по перемещению точки: . Ответ: .