Оқушылардың «Өркен» ғылыми қоғамы Идрисов Мәди 10 сынып Үсенов Асылхан 10 сынып алгебралық есептерді геометриялық ТӘсілмен шешу



бет6/19
Дата27.04.2022
өлшемі0,67 Mb.
#141011
1   2   3   4   5   6   7   8   9   ...   19
Байланысты:
d0b5d181d0b5d0bfd182d0b5d180d0b4d196-d0b3d0b5d0bed0bcd0b5d182d180d0b8d18fd0bbd18bd29b-d182d399d181d196d0bbd0bcd0b5d0bd-d188d0b5d188

    Бұл бет үшін навигация:
  • Есеп.
§1. Сызықтық теңдеу
Алгебралық есепті геометриялық тәсілмен шығару барысында төмендегі негізгі ережені басшылыққа аламыз:
Ереже: Сандық шамалар ретінде кесіндінің ұзындығы алынады. Кесінді ұзындығына сандық шаманың модулі сәйкес қойылады.
Сызықтық теңдеуді геометриялық жолмен шешу ежелгі гректер зерт­теулерінің арқауы болғаны бізге математика тарихынан белгілі [2]. Олар өз еңбектерінде сызықтық теңдеулерді геометриялық жолмен шешудің «аудандарды қолдану», - деп аталатын тәсілін пайдаланады. Гректер зерт­теулеріне сәйкес сызықтық теңдеуді мына үлгіде жазып

мұндағы берілген шамалар, «аудандарды қолдану» тәсіліне сәйкес осы теңдеуді шешу есебін бұлайша тұжырымдаймыз:
Есеп. кесіндісін қолданып ауданы -қа тең квадратпен теңшамалы тіктөртбұрыш сал.
Е скерту. Салу есептері сызғыш және циркульдің көмегімен орындалады. Бірінші тәсіл. Алдымен, мысал ретінде, қойылған есепті шығарудың төмен­дегі тәсілін [3] келтірелік.
1. ұзындығы -ға тең ВА кесіндісінің созындысына ауданы –қа тең ACDE квадратын саламыз.
2. DE – кесіндісінің созындысына EF = а кесіндісін белгілеп, EFBA- тіктөртбұрышын аламыз.
3. FA – диагоналын DC – кесіндісінің созындысымен қиылысқанша созамыз. Қиылысу нүктесін G деп белгілейміз.
4. GDFH – тіктөртбұрышын саламыз.
FG – кесіндісі GDFH- тіктөртбұрышының диагоналы, ендеше ΔFHG=ΔGDF. Дәл осындай тұрғыдан ΔFBA=ΔAEF, ΔAJG=ΔGCA. Үшбұрыштардың теңдігінен олардың аудандарының теңдігі шығады. Сондықтан . Олай болса, . Ендеше .
«Аудандарды қолдану» әдісінің бұл түрі параболалық деп аталады [2].


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   19




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет