Байланысты: aksanova ii. olimpiadnye zadaniya.reshenie uravneniy v tselyh chislah
3. Метод остатков. Этот метод основан на исследовании возможных остатков левой и правой частей уравнения от деления на некоторое фиксированное натуральное число.
Замечание. Говоря строго математическим языком, для решения уравнения в данном случае применяется теория сравнений.
Рассмотрим примеры, которые раскрывают сущность данного метода.
Пример 3.1. Решить уравнение в целых числах x3 + y3 = 3333333;
Так как x3 и y3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в приложении 1), то x3 + y3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
Пример 3.2. Решить уравнение в целых числах x3 + y3 = 4(x2y + xy2 + 1).
Перепишем исходное уравнение в виде (x + y)3 = 7(x2y + xy2) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.
Ответ: целочисленных решений нет.
Пример 3.3. Решить в целых числах уравнение x2 + 1 = 3y.
Решение. Заметим, что правая часть уравнения делится на 3 при любом целом y.
Исследуем какие остатки может иметь при делении на три левая часть этого уравнения.По теореме о делении с остатком целое число х либо делится на 3, либо при делении на три в остатке дает 1 или 2.
Если х = 3k, то правая часть уравнения на 3 не делится.
Если х = 3k+1, то x2 + 1= (3k+1)2+1=3m+2, следовательно, опять левая часть на 3 не делится.
Если х = 3k+2, то x2 + 1= (3k+2)2+1=3m+2, следовательно, и в этом случае левая часть уравнения на три не делится.
Таким образом, мы получили, что ни при каких целых х левая часть уравнения на 3 не делится, при том, что левая часть уравнения делится на три при любых значениях переменной y. Следовательно, уравнение в целых числах решений не имеет.
Ответ: целочисленных решений нет.
Пример 3.4. Решить в целых числах x³ - 3y³ - 9z³ = 0 (1)
Решение. Очевидно, что решением уравнения будет тройка чисел (0; 0; 0).
Выясним, имеет ли уравнение другие решения. Для этого преобразуем уравнение (1) к виду
x³ = 3y³ + 9z³ (2)
Так как правая часть полученного уравнения делится на 3, то и левая должна делиться на три, следовательно, так как 3 - число простое, х делится на 3, т.е. х = 3k, подставим это выражение в уравнение (2), получим:
27k3 = 3y³ + 9z³, откуда
9k3 = y³ + 3z³ (3)
следовательно, y³делится на 3 и y = 3m. Подставим полученное выражение в уравнение (3): 9k3 = 27m³ + 3z³, откуда
3k3 = 9m³ + z³ (4)
В свою очередь, из этого уравнения следует, что z3 делится на 3, и z = 3n. Подставив это выражение в (4), получим, что k3 должно делиться на 3.
Итак, оказалось, что числа, удовлетворяющие первоначальному уравнению, кратны трём, и сколько раз мы не делили бы их на 3, опять должны получаться числа, кратные трём. Единственное целое число, удовлетворяющее этому условию, будет нуль, т. е. решение данного уравнения (0; 0; 0) является единственным.
Ответ: (0;0;0).