Сабақтың тақырыбы: Фотоэффект. Фотоэффектіні қолданылу. Фотон. Сабақтың мақсаты



бет1/3
Дата25.08.2017
өлшемі0,53 Mb.
#27550
түріСабақ
  1   2   3
Пәні: физика

Сыныбы: 11 Сабақ: 39 Мерзімі:

Сабақтың тақырыбы: Фотоэффект. Фотоэффектіні қолданылу. Фотон.

Сабақтың мақсаты:

Білімділік: Оқушыларға фотоэффект ұғымы мен оның заңдарын меңгерту, фотоэффект құбылысын тәжірибе жүзінде алғаш зерттеген А.Г.Столетовтің ғылыми еңбегін таныстыру.

Дамытушылық: Оқушылардың ойлауын дамыту, компьютер арқылы модельдеу процестерін қалыптастыру.
Тәрбиелік: Оқушылардың зейінін, жауапкершілік сезімін, физика пәнін қызығушылықпен оқуға тәрбиелеу.
Сабақтың әдісі: ауызша, жазбаша, сұрақ-жауап, кітаппен жұмыс.

Сабақтың түрі: Жаңа материалды меңгерту.

Көрнекіліктер: компьютер, слайдтар, видео тәжірибе, тапсырмалар, плакаттар

Сабақтың пәнаралық байланысы: математика.

Сабақтың барысы:

І. Ұйымдастыру кезеңі.

Оқушылармен сәлемдесу, сыныпты түгендеу.

ІІ. Үй тапсырмасын тексеру.

1. Макс Планк гипотезасы қалай тұжырымдалады?

2. Әр кванттың энергиясы неге тең?

3. Планк тұрақтысы неге тең?

4. Фотон дегеніміз не?

5. Фотон қандай бөлшек?

ІІІ. Жаңа материалды меңгерту.

Фотоэффект Фото – грек сөзінен аударғанда - жарық, эффект латын сөзінен аударғанда - әсер деген мағынаны білдіреді. Фотоэффект-сәулелердің әсерінен электрондардың сұйық және қатты дене бетінен босап шығу құбылысын сыртқы фотоэлектрлік эффект немесе фотоэффект деп атайды. Фотоэффект құбылысын тәжірибе жүзінде алғаш зерттеп, заңдылықтарын тағайындаған орыс ғалымы А.Г.Столетов. Фотоэффект құбылысын түсіндіру жолын А.Эйнштейн тапты. Ол фотоэффект құбылысын түсіндіру үшін жарықтың бөлшектік әрі кванттық қасиетіне сүйенді. Жарық екіжақтылығымен сипатталады: біріншісінде, ол толқындық жағынан танылса, екінші жолы бөлшек (корпускула), яғни Эйнштейн сөзімен айтқанда фотондар ағыны ретінде көрінеді. Бұл құбылыс жарықтың толқындық -корпускулалық дуализмі (екі жақтылығы) деп аталады Электронның металдан босап шығуы үшін жасайтын жұмысын электронның шығу жұмысы деп атайды. Энергияның сақталу заңы бойынша жұтылған жарық фотонының hν энергиясы электронның Ашығу жұмысына және оның Ek=meυ²/2 кинетикалық энергиясына жұмсалады. Эйнштейн формуласы Фотоэффект құбылысы мына шарт орындалса ғана байқала бастайды: hν0» Aшығу. Фотоэффект байқалатын жарықтың ең аз дегендегі жиілігін немесе оған сәйкес келетін толқын ұзындығын фотоэффекттің қызыл шекарасы деп атайды. Мысалы, мырыш үшін жарық толқынының ұзындығы (қызыл шекарасы)-370 мкм, калий-450 мкм, натрий-680 мкм. Фотоэффект құбылысына негізделіп жасалған құралды фотоэлемент деп атайды. Ол катод, анод және саңылаудан тұрады. IV. Жаңа сабақты бекіту. 39-жаттығу есептерін шығару. Бағалау критерийі: «5» - 3 дұрыс жауап «4» - 2 дұрыс жауап «3» - 1 дұрыс жауап V.Сабақты қорытындылау VI. Үй тапсырмасы §50, 51 оқу және тақырып соңындағы бақылау сұрақтарына жауап жазып келу. Тақырып бойынша тірек сызбасын құрастыру VII.Бағалау Оқушыларды сабаққа қатысу белсенділігі мен біліміне қарай бағалау. Бағаларын хабарлап, күнделіктеріне қою
ІV. Бекіту.

Фотоэффект деп қандай құбылысты айтамыз?

Фотоэффектінің тәжірибелік заңдарын айтып беріңдер.

Фотоэффект үшін Эйнштейн теңдеуін жазыңдар.

Фотон деген не?

Фотонның импульсі, тыныштық массасы, энергиясы неге тең?
Деңгейлік тапсырмалар:
І деңгей
1. Фотонның энергиясы 2,8*10-19Дж. Электромагниттік сәуленің толқын ұзындығы қандай? (Ж/бы: 0,71мкм.)
2. Калий үшін электронның шығу жұмысы 1,92эВ. Калий үшін фотоэффектінің қызыл шекарасы қандай? (Ж/бы: 0,65мкм)
3. Тантал үшін фотоэффектінің қызыл шекарасы 0,2974мкм. Электронның танталдан шығу жұмысын анықтаңыз. (Ж/бы: ~6,6*10-19Дж)
ІІ деңгей
1. Фотоэлектрондардың максимал жылдамдығы 3000км/с болу үшін платина бетіне қандай жиіліктегі сәуле бағыттау керек? Платина үшін шығу жұмысы 6,3эВ. (Ж/бы: 7,7*1015Гц)
2. Фотоэлектрондардың ең үлкен жылдамдығы 2Мм/с болу үшін цезийдің бетіне толқын ұзындығы қандай сәулелерді жіберген жөн? (Ж/бы: 94,5нм)
3. Электрондар қандай жылдамдықта толқын ұзындығы 200нм ультракүлгін жарықтың фотондар энергиясына тең энергияға ие болады? (Ж/бы:~1480км/с)
V. Қорытындылау.

VІ.Бағалау.
VІI.Үй тапсырмасын беру: §6.4-§6.6,№24.4-25.6.

Пәні: физика

Сыныбы: 11 Сабақ: 40 Мерзімі:

Сабақтың тақырыбы: Жарықтың қысымы.

Сабақтың мақсаты:

Білімділік: Оқушыларға жарықтың қысымы ұғымы мен оның заңдарын меңгерту, оқушы білімін, іскерлігін, дағды деңгейін бақылау, бағалау.  

Дамытушылық: Оқушылардың білім деңгейін және білім мазмұнының тұрақтылығы мен оны игерудегі іскерлік пен дағдыны бақылау.
Тәрбиелік: Адамгершілікке, ұқыптылыққа, алғырлыққа, отансүйгіштікке, табиғатты аялауға, сыйластық пен әдептілікке баулу.

Сабақтың әдісі: ауызша, жазбаша, сұрақ-жауап, кітаппен жұмыс.

Сабақтың түрі: жаңа білімді қалыптастыру.

Көрнекіліктер: компьютер, слайдтар, видео тәжірибе, тапсырмалар, плакаттар

Сабақтың барысы:

І. Ұйымдастыру кезеңі.

Сәлемдесу; Оқушыларды түгендеу;Оқушылардың назарын сабаққа аудару.

ІІ. Үй тапсырмасын тексеру.

Фотоэффект деп қандай құбылысты айтамыз?

Фотоэффектінің тәжірибелік заңдарын айтып беріңдер.

Фотоэффект үшін Эйнштейн теңдеуін жазыңдар.

Фотон деген не?

Фотонның импульсі, тыныштық массасы, энергиясы неге тең?

Вакуумдік фотоэлемент деген не?

Вакуумдік фотоэлементтер қайда пайдаланылады?  

Ішкі фотоэффект құбылысы?  

ІІІ. Жаңа материалды меңгерту.

Максвелл жарықтың электромагниттік теориясы негізінде жарық қарсы кездесетін тосқауылдарға қысым көрсететіндігін алдын ала болжап айтты. Жарық   қысымын   П.Н.Лебедев өлшеді. Толқынның электр өрісінің әсерінен денедегі электрондар тербеліс жасайды. Электр тоғы пайда болады. Бұл ток электр өрісі кернеулігінің бойымен бағытталған (1- сурет). Реттелген қозғалыстағы электрондарға магнит өрісі тарапынан толқынның таралу бағытына қарай бағытталған Лоренц күші  әсер етеді. Бұл - жарық қысымының күші. Максвелл теориясының дұрыстығын дәлелдеу үшін жарық қысымын өлшеу маңызды болды. Көптеген ғалымдар солай жасамақшы еді, бірақ жарық қысымы өте аз болғандықтан, оның сәті келмеді. Ашық күндері 1 м2 ауданға не бары 4×108 Н күш өсер етеді. Жарық қысымын алғашқы рет атақты орыс физигі Петр Николаевич Л е б е д е в 1900 ж. өлшеді. Лебедевтің аспабы жіңішке шыны қылға ілінген өте жеңіл стерженьнен тұрады, оған жеңіл қанатшалар жапсырылған (2-сурет). Аспап ауасы сорылып алынған ыдыстың ішіне тұтас орналастырылған. Жарық стерженьнің бір жағына орналасқан қанатшаларға түскен. Қысымының шамасы туралы жіптің шиыршықталу бұрышы бойынша сөз етуге болады. Жарық қысымын дәл елшеу қиындығы ауаны ыдыстан түгелдей сорьш алу мүмкін еместігімен байланысты болды (қанатшалар мен ыдыс қабырғаларының біркелкі қызбауынан ауа молекулаларының қозғалысы қосымша айналдырушы моменттің пайда болуына себепші болады). Сонымен бірге, қанатшалар беттерінің әр түрлі қызуы жіптің шиыршықталуына әсер етеді (жарық көзіне қарай бағытталған бет қарама-қарсы беттен артық қызады). Неғүрлым көбірек қызған беттен шағылған молекулалар, аздап қызған беттен шағылған молекулаларға қарағанда, қанатшаға үлкен импульс береді. Сол кездегі эксперименттік техника дәрежесінің төмендігіне қарамастан, өте үлкен ыдыс және өте жұқа қанатшалар алып, Лебедев осы қиыншылықтардың бәрін жеңе білді. Ақырында жарықтың қатты денелерге қысым түсіретіне дәлелденді және оның шамасы өлшеңді. Ол Максвеллдің алдын ала айтқанымен дәл келді. Соңынан үш жыл еңбектеніп, Лебедев бұдан да нәзік экспериментті іс жүзіне асырды: жарықтың газдарға түсіретін қысымын өлшеді. Жарықтың кванттық теориясының пайда болуы жарық қысымының себебін өте оңай түсіндіруге мүмкіндік берді. Әдеттегі тыныштық массасы бар заттың бөлшектері сияқты, фотондардың импульсі бар. Олар өздерін жұтқан денеге өз импульсін береді. Бірақ импульстің сақталу заңына сәйкес дененің импульсі жұтылған фотондар импульсіне тең. Сондықтан тыныштықтағы дене қозғалысқа келеді. Дене импульсінің өзгеруі дегеніміз - Ньютонның екінші заңына сәйкес, денеге күш әсер етті деген сөз. Лебедев тәжірибелерін фотондарды импульс болады дегеннің эксперименттік дәлелдемесі ретінде қарастыруға болады. Әдеттегі жағдайларда жарық қысымы өте аз болса да, оның әсері едәуір болуы мүмкін. Температурасы бірнеше ондаған миллион градус жұлдыздардың ішінде электромагниттік толқын шығарудың қысымы аса зор шамаға жетуі мүмкін. Бұл қысым гравитациялық күштермен қатар жүлдыздардың ішіндегі процестерде маңызды рөл атқарады. Максвелл динамикасына сәйкес жарық қысымы электромагниттік толқынның электр өрісінің ықпалынан тербелетін ортаның электрондарына Лоренц күші әсер ететіндіктен туындайды. Кванттық теория тұрғысынан алғанда фотондар жұтылғанда олардың денеге беретін импульстерінің нәтижесінде қысым көрініс береді. Рентген түтігінің құрылысы  Қазіргі кезде рентген сәулелерін шығарып алу үшін рентген түтіктері деп аталатын әбден жетілдірілген қүрылғылар жасалған. 3-суретте электрондық рентген түтігінің ықшамдалған схемасы кескінделген. Катод 1- вольфрамнан жасалған қылсым,  ол термоэлектрондық эмиссия есебінен электрондар шығарады. Цилиндр 3 - электрондар ағынын фокустайды, сонан соң олар металл электродпен 2- (анодпен) соқтығысады. Осыдан рентген сәулелері туындайды. Анод пен катодтың арасындағы кернеу бірнеше ондаған киловольтқа жетеді. Түтікге толық вакуум жасалады; оңдағы газдың қысымы 10-5 мм сын. бағ-нан аспайды. Қуатты рентген түтіктерінде анод сумен салқындатылады, өйткені элек-трондар тежелгенде көп мөлшерде жылу белініп шығады. Электрондар энергиясының 3%-і ғана пайдалы сәулеге айналады. Рентген сәулелерінің толқын үзындығы 10-9-нен 10-10-не дейінгі диапазонда болады. Олардың өтімділік қабілеті зор және медицинада, сондай-ақ кристалдар мен күрделі органикалық молекулалардың құрылымын зерттеу үшін пайдаланылады Рентген сәулелерінің ашылуы. Бұл сәулелерді 1895 ж. неміс физигі Вильгельм Рентген ашқан. Рентген өзіне дейінгі көптеген ғалымдардың мән бермеген және аңғара қоймағандарын байқай білді. Осы ерекше қабілеті оның тамаша жаңалық ашуына жәрдемдесті. XIX ғасырдың аяғында аз қысымды газдардағы разряд физиктердің назарын жаппай аударды. Бұл жағдайларда газ разрядтық түтіктерде өте шапшаң электрондардың ағыны туғызылған. Сол уақытта оларды катод сәулелері деп атаған. Бұл сәулелердің табиғаты ол кезде сенімді түрде тиянақтала қоймаған еді. Тек бұл сәулелердің шығатын басы түтіктің катодында екені ғана мәлім болған. Катод сәулелерін зерттеумен шұғылданған Рентген, фотопластина қара қағазға ораулы тұрғанына қарамастан, разрядтық түтікшенің маңында ағарып қалғанын байқады. Осыдан кейін ол тағы бір таңқаларлык, құбылысты байқады. Барийдің платина ерітіндісіне батырылған қағаз экранға разрядтық түтікшені орағанда, экран ағара бастайтыны байқалды. Оның үстіне, Рентген түтікше мен экранның арасына қолын ұстағанда экранда қолдың нобайының қылаң реңкінде сүйектердің көлеңкелері көрінеді. Ғалым разрядтық түтікшемен жұмыс істегенде бұрын белгісіз күшті, өтімді сөуле пайда болатынын түсінді. Ол оны Х-сәулелер деп атады. Соңынан бұл сәулелерге “рентген сәулелері” деген термин берік қалыптасты. Рентген жаңа сәуле катод сәулелерінің (шапшаң электрондар ағыны) шыны түтіктің қабырғаларына соқтығысқан орындарында пайда болатынын байқаған. Бұл орында шыны жасылдау жарық шығарған. X-сәулелер шапшаң электрондарды кез келген кедергімен, атап айтқанда металл электрондармен тежегенде пайда болатынын кейінгі тәжірибелер көрсетті.

ІV. Бекіту.

 Кванттық теория тұрғысынан жарық қысымын қалай түсіндіруге болады?

Максвеллдің электромагниттік теориясына сүйеніп, жарықтың бетке қысым түсіретінін дәлелдеңдер.

Есептер шығарту. №26.1-№26.3.

V. Қорытындылау

VI. Бағалау.

VІІ. Үй тапсырмасын беру: §6.8, есептер шығарту. №26.4, №26.5. 


Пәні: физика

Сыныбы: 11 Сабақ: 42 Мерзімі:

Сабақтың тақырыбы: Рентгендік сәуле шығару. Компьютерлік томография.

Сабақтың мақсаты:

Білімділік: Оқушыларға рентген сәулесінің ашылуын, қасиеттерін және өмірде қолданысын түсіндіру. 

Дамытушылық: Оқу материалын талдай білу дағдысын дамыту, бақылау, салыстыру, оқылған құбылыстар мен фактілерді салыстыра білу, қорытынды жасай білуге баулу. Жаңа білімді қолдану дағдысын дамыту, ақылға салу дағыдысын қалыптастыру.

Тәрбиелік: Оқушылардың мақсатқа жету барысында жауапкершіліктерін жетілдіру, тазалыққа, мәдениеттілікке тәрбиелеу.
Сабақтың әдісі: түсіндіру, жазбаша, тест, физикалық диктант.

Сабақтың түрі: Аралас сабақ, өтілген тақырыпты қайталай отырып, жаңа сабақты өз бетімен жетілдіру.

Көрнекіліктер: компьютер, слайдтар, видео тәжірибе, тапсырмалар, плакаттар, оқулықтар.

Сабақтың пәнаралық байланысы: биология, химия .

Сабақтың барысы:

І. Ұйымдастыру кезеңі.

Мұғалім сәлемдесіп болғаннан кейін оқушылардың сабаққа дайындығын қадағалап, сабақта жоқ оқушыларды түгелдеу.
ІІ. Үй тапсырмасын тексеру.
1. 1888 жылы электромагниттік толқындар арқылы алыс қашықтықтарға сигнал жеткізудің ғылыми болжамын ұсынған ғалым? (орыс ғалымы Александр Степанович Попов)
2. Интерференция дегеніміз не? (кеңістіктің әр түрлі нүктелерінде қорытқы тербелістер амплитудаларының уақыт жөнінен тұрақты таралу тәртібі орнайтындай болып бір немесе бірнеше толқынның қосылуы)
3. Электромагниттік толқын дегеніміз не? (вакуумда немесе кез келген ортада электромагниттік өрістің таралуы)
4. Жарық күші немен өлшенеді? (канделла)
5. 1900 жылы жылулық сәулелердің эксперименттік нәтижесін түсіндіруде тығырықтан шығу жолын тапқан ғалым? (Неміс астрономы Иоган Кеплер)
6. Өте майда заттарды зерттеуге арналған құрал? (лупа, линза)
7. Дыбыс жылдамдығы нешеге тең? (300м/с)
8. Дифракция дегеніміз не? (толқындардың бөгеттерді орағытып өтуі)
9. Жарық дегеніміз не неше түрі бар? (2 түрі бар, табиғи және жасанды)
10. Тербеліс дегеніміз не, тербелісті сипаттайтын шамалар бар? (Белгілі бір уақыт өткенде қайталанып отыратын процесс. тербелісті сипаттайтын шамалар: период, жиілік, амплитуда, фаза т. б)
11. Тербеліс амплитудасы дегеніміз не? (тербеліс кезіндегі ең үлкен ауытқу)
12. Жарық жылдамдығы нешеге тең? (300 000м/с)
13. Радионы ең алғашқы ойлап тапқан кім? (А. С. Попов)
14. 1831 жылы электромагниттік индукция құбылысын ашқан ғалым? (Ағылшын физигі Майкл Фарадей(1791-1867)
15. Оптикалық аспаптарға нелер жатады, неліктен? (лупа, линза, микроскоп, телескоп т. б. )
16. Cпектр дегеніміз не және оның түрлері? (латын тілінен «елес, көрініс», бірнеше түрлері бар: жолақ, сызықтық, үзіліссіз т. б. )
17. Толқын ұзындығының формуласын жаз:
18. Тербеліс периодының формуласы:
19. Линзаның оптикалық күшінің формуласы:
20. Тербеліс жиілігінің формуласы:

ІІІ. Жаңа материалды меңгерту.
Рентген сәулелердің жұтылу дәрежесі заттың тығыздығына пропорционал. Сондықтан рентген сәулелерінің жәрдемімен адамның ішкі ағзаларының фотографиясын алуға болады. Бұл фотографияларда қаңқа сүйектерін және жұмсақ тканьдердің әр түрлі өзгерістерін оңай ажыратуға болады.
Қазір біздің еліміздегі барлық азаматтар жылына бір рет флюорография өтуге тиіс. Рентген сәулелерінің жәрдемімен адам ауырғанын сезе бастаудан бұрын, ауруды алдын ала анықтап білу үшін, кеуде клеткаларының суреті түсіріледі.
Рентген сәулелерінің ашылуы. Бұл сәулелер 1895 жылы неміс физигі Вильгельм Рентген ашқан. Рентген өзіне дейінгі көптеген ғалымдардың мән бермеген және аңғара алмағандарын байқай қойды, осы ерекше қабілеті оның тамаша жаңалық ашуына жәрдемдесті.
Бұл кезде газ-разрядтық түтіктерде өте шапшаң электрондардың ағыны туғызылған және сол уақытта оларды катод сәулелері деп атаған. Бұл сәулелердің табиғаты сол кезде сенімді түрде тиянақтала қоймаған еді, тек бұл сәулелердің шығатын басы түтіктің катодында екені ғана мәлім болған.
Катод сәулелерін зерттеумен шұғылданған Рентген, фотопластина қара қағазға ораулы тұрғанына қарамастан, разрядтық түтікшенің маңында ағарып қалған. Осыдан кейін ол тағы бір таңқаларлық құбылысты байқады. Барийдің платина ерітіндісіне батырылған қағаз экранға разрядтық түтікшені орағанда, экран ағара бастайтыны байқалды оның үстіне Рентген түтікше мен экранның арасына қолын ұстағанда экранда қолдың нобайының қылаң реңкінде сүйектердің қара көлеңкелері көрінеді.
Ғалым разрядтық түтікшемен жұмыс істегенде бұрын белгісіз күшті, өтімді сәуле пайда болатынын түсінді. Ол оны Х-сәулелер деп атады. Соңынан бұл сәулелерге «рентген сәулелер» деген термин берік қалыптасты.
Рентген жаңа сәуле катод сәулелерінің (шапшаң электрондар ағыны) шыны түтіктің қабырғаларына соқтығысқан орындарында пайда болатыны байқалған. Бұл орында шыны жасаудан жарық шығарған. Х-сәулелер шапшаң электрондарды кез келген кедергімен атап айтқанда металл электрондармен тежегенде пайда болатынын кейінгі тәжірибелер көрсетті.
Рентген сәулелерінің қасиеттері: рентген ашқан сәулелер фотопластинаға әсер етеді, ауаның иондалуын туғызады бірақ кез келген бір заттардан айтарлықтай шағылмайды және сынбайды. Электромагниттік өріс олардың таралу бағытына ешқандай әсерін тигізбейді.
Осыдан кейін бірден рентген сәулелері электрондардың кенет тежелуінен шығатын электромагниттік толқындар деген болжам жасалды. өтімділігі және басқа ерекшеліктері дәл осы толқын ұзындығының шағын болуымен байланыстырылады. Бірақ бұл гипотеза дәлелдеуді қажет етеді. Және ондай дәлелдеулер Рентген ашқаннан кейін 15 жылдан соң жасалды.
Рентген сәулелерінің дифракциясы. Егер рентген сәулелері электромагниттік Спектрді көрінетін бөлігінің жарық сәулелері мен ультракүлгін сәулелерінен өзгеше рентген сәулелерінің толқын ұзындықтары біршама кіші болады. Кедергіге соқтығысатын электрондардың энергиясы неғұрлым көп болса, олардың толқын ұзындығы соғұрлым кіші болады. Рентген сәулелерінің жоғары толқындар болса, онда толқынның барлық түріне тән құбылыс – дифракция байқалуы тиіс. Алғаш рентген сәулелерін қорғасын пластиналардың өте жіңішке саңырау арқылы жіберген, бірақ дифракцияға ұқсас ешнәрсе байқалмаған. Неміс физигі Макс Лауэ жасанды бөгеттерден сол толқындардың дифракциясын байқау үшін рентген сәулелерінің толқын ұзындығы тым кішкене болар деп жорыды. Шындығында, атомның өлшемдерімен бірдей, өлшемдері 10см болатын саңылау жасау мүмкін емес. Онда қалатын бір ғана мүмкіндік – кристалдарды пайдалану. Олардың реттелген құрылымы бар, олардағы жеке атомдардың ара қашықтығы шамасының реті жөнінен атомдардың ара қашықтығы шамасының реті жөнінен атомдардың өздерінің өлшемдеріне, яғни 10см тең.
Периодты құрылымы бар кристалл, ұзындықтары атом өлшемдерімен шамалас келетін толқындардың дифракциясын туғызатын, табиғи құрылғы болып табылады.
Рентген сәулелерінің толқын ұзындығы 10 м ден 10 дейінгі диапазонда болады. Олардың өтімділігі зор және медицинада, сондай-ақ кристалдар мен күрделі органикалық молекулалардың құрылымын зерттеу үшін пайдаланылады.
Компьютерлік томография –мүшелер және дененнің барлық бөліктері жоғары ақпараттық әдісітің көмегімен зерттелетін болады. Компьютерлік томография әр түрлі ісік түрлерін ерте анықтау үшін тиімді әдістердің бірі болып келеді.  Біздің томографтың жоғары шешуші мүмкіндігі тамырларды зерттеу тіндегі пайда болған тіпті кішкентай ісіктің зарарсыз екенін айқындауға қорытынды береді.   Компьютерлік томография өткізілген терапияның тиімділігі мен динамикасын бағалау мүмкіндігін береді және емдеуді түзету үшін бағалы ақпрарат береді.   Компьютерлік  томография ересектер мен 1 жастан асқан балаларға жасалады.

Компьютерлік томографияға көрсеткіш

Компьютерлік томография  медицинада бірнеше мақсат үшін кеңінен қолданылады:

1.  Скринингтік  тест сияқты — келесі жағдайларда: басаурығанда, басынан жарақат алғанда, сүйемелдеусіз есінен тану, талғанда, өкпе обырының шығуы. Скрининг үшін компьютерлік томографияны қолдану жағдайында зерттеу жоспарлы тәртіпте жасалады.

2. Жіті көрсеткіштер бойынша диагностикалау үшін – жіті  компьютерлік томография ауыр жарақат кезінде, миға қан кету қауіпі кезінде,  тамырлардың зақымдану қауіпінде (мысалы, қабаттанған аорта аневризмі)      паренхиматозды органдар жіті зақымдану кейбір басқа күмәнділігіне (негізгі аурулар шиеленісі, өткізілген емнің нәтижесі)

3. Жоспарлы диагностикалау үшін компьютерлік томография  көптеген КТ зерттеулері диагнозды түбегейлі растау үшін дәрігердің жолдауы бойынша  жоспарлы тәртіпте жүргізіледі.   Ережеге сай компьютерлік томография өткізу алдында жай ғана рентген тексерісі, УДЗ, анализдер және т.б. жасалады.

4. Емдеу нәтижесін бақылау үшін.

5. Емдік және диагностикалық манипуляцияларды өткізу үшін, мысалы компьютерлік томографияның бақылауымен пункция және т.б.



ІV. Бекіту.

Физикалық диктант

1. .............. сәуле электромагниттік толқындар шкаласында көрінетін жарық пен радиотолқындар аралығындағы бөлікті алып жатады.

2. Ғарыштан келетін рентгендік сәулені ...................... ұстап қалады.

3. Температурасы 10000С-тан кем болатын дене ................ сәуле шығарады.

4. ...............сәуле электромагниттік толқындар шкаласында көрінетін жарық пен рентгендік сәуле арасындағы бөлікті алып жатады.

5. ...............сәуле электромагниттік толқындар шкаласында ультракүлгін сәуле мен -сәуле арасындағы бөлікті алып жатады.

6. Ғарыштан келетін ................... сәулені көмірқышқыл газы молекулалары өзіне сіңіріп алады да, жерге көп мөлшерде өткізбейді.

7. 1901 жылы ................................. физика саласы бойынша ең бірінші Нобель сыйлығының лауреаты атанды.

8. Ғарыштан келетін ..................... сәуле атмосфераның озон қабатында жұтылады.

9. Рентген сәулесінің дифракциясын ......... см шамасында алуға болады.

10. Протонды кенет тежегенде .................... сәуле алуға болады.


Каталог: sabaq-kz -> attachment
attachment -> Қазақ тілі мен әдебиет пәні мұғалімі, филология магистрі Амирханова Сара Бекетқызы Коучинг жоспарының тақырыбы: «Lesson study – сабақты зерттеу әдісі»
attachment -> Сабақ тақырыбы: Химияның негізгі түсініктері мен заңдары Сілтеме
attachment -> Сабақтыңтақырыбы: 3 4
attachment -> Сабақ: Алкандардың қасиеттері. Алкандардың жеке өкілдері және қолданылуы
attachment -> Сабақтың түрі: Аралас сабағы Сабақ уақыты: 90 мин. Сабақтың педагогикалық мақсаты
attachment -> Сабақ Алматы қаласы Алатау ауданы «185 жалпы білім беретін мектеп» коммуналдық мемлекеттік мекемесі Бастауыш сынып мұғалімі Курманова Маржан Сеилхановна
attachment -> Сабақтың тақырыбы Сағат саны Мерзімі Оқып-үйренудің негізгі мақсаты
attachment -> Сабақтың мақсаты: оқушыларға алжапқыштың және бас орамалдың сызбасын есептеуді және құрастыруды үйрету


Достарыңызбен бөлісу:
  1   2   3




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет