Типовой расчёт По математическому анализу №4 Синюшкин Тимофей



бет1/2
Дата11.05.2022
өлшемі256,72 Kb.
#142297
  1   2
Байланысты:
тр матан 4

Типовой расчёт


По математическому анализу № 4
Синюшкин Тимофей
Студент АБ-124
Вариант 19

1

2

3

4

5

6

7

8

9

10

































Задачи 19. Найдите общие решения дифференциальных уравнений и частные решения, если есть начальные условия.

  1. .

. Уравнение является однородным. Сделаем замену Тогда . Получим уравнение , или . Запишем уравнение в дифференциалах: . Разделяем переменные: . Интегрируем уравнение: . Получим:
или . Вернёмся к переменной y, делая обратную замену u=y/x: . Определим постоянную С из начальных условий: , отсюда C=1. Подставляя это значение в общее решение, получим частное решение: .
Ответ: .

  1. .

. Уравнение является линейным. Решим его методом Бернулли. Будем искать решение в виде произведения y=U∙V, где U и V неизвестные функции, определяемые в данном случае уравнениями и или . Решим первое уравнение: или . Отсюда (произвольная постоянная добавляется при решении второго уравнения). Потенцируя, находим: . Подставим найденную функцию U во второе уравнение и решим его: или . Тогда
. Таким образом, общее решение имеет вид: или . Найдём C, исходя из начальных условий: . Тогда . Таким образом, частное решение есть .
Ответ: .

  1. .

. Это уравнение Бернулли. Его можно решать непосредственно как линейное уравнение, применяя метод вариации произвольной постоянной. Решим однородное уравнение: или . Отсюда находим . Будем предполагать, что решение исходного уравнения имеет такую же структуру, но C=C(x), т.е. , где C(x) – некоторая неизвестная функция. Определим эту функцию, подставляя данное (предполагаемое) решение в исходное уравнение. Найдём . Тогда . Или
. Разделяем переменные: . Интегрируем уравнение:
. Следовательно, . Общие решение уравнения . Воспользуемся начальными условиями: , т.е. C1=0. Тогда частным решением будет .
Ответ: .

  1. .

.
Найдём частные производные: , . Следовательно, уравнение является уравнением в полных дифференциалах. Левая часть этого уравнения представляет полный дифференциал некоторой функции U(x,y), так что и . Проинтегрируем первое уравнение по x: . Таким образом, , где φ(y) – произвольная функция. Найдём эту функцию, пользуясь вторым уравнением. С одной стороны . С другой стороны, . Приравнивая эти выражения, получим: . Отсюда, . Согласно уравнению, dU=0. Решением уравнения будет U(x,y)=C. В данном случае .
Ответ: .

  1. .

Уравнение второго порядка, допускающее понижение порядка. В уравнении отсутствует независимая переменная x. Сделаем замену . Тогда . Получим уравнение Бернулли: или . Решим его методом Бернулли: . Функцию U найдём из уравнения Или . Функцию V найдём из уравнения . Подставляя сюда функцию U, получим: . Таким образом, . Определим постоянную C1, пользуясь начальным условием : . Следовательно, . Тогда . Определим C2, пользуясь вторым начальным условием : . Окончательно, или .
Ответ: .

  1. .

Линейное неоднородное уравнение второго порядка. Решим уравнение методом вариации произвольных постоянных. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два равных корня: . Получаем два частных решений: . Общее решение однородного уравнения имеет вид: . Будем считать, что решение неоднородного уравнения имеет такую же структуру, но С1 и С2 являются функциями переменной х: . Тогда, в соответствии с методом вариации произвольных постоянных, неизвестные функции С1(х) и С2(х) определяются системой уравнений:
, где f(x) – правая часть неоднородного уравнения. В данном случае имеем систему: . Поделим все уравнения на : . Решим систему методом Крамера:
. Интегрируя, получаем: . Следовательно, решением неоднородного уравнения будет . Теперь можно вернуться к прежним обозначениям произвольных постоянных. Положим С3=С1 и С4-2=С2. Окончательно, .
Ответ: .

  1. .

. Линейное неоднородное уравнение четвёртого порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение , или , имеет четыре корня: . Получаем четыре частных решений: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Здесь множитель х3 обусловлен тем, что корень характеристического уравнения r=0 совпадает с коэффициентом α в экспоненте eαx, «стоящей» в правой части уравнения (α=0). Найдём производные yчн:: . Подставим это в исходное уравнение: . Отсюда находим . Или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: .
Ответ: .

  1. .

. Линейное неоднородное уравнение второго порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: . Найдём производные yчн:: . Подставим это в исходное уравнение: . Отсюда находим или . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: . Воспользуемся начальными условиями: . По первому условию . Найдём . Тогда, по второму условию, . Решая систему уранений, получим: . Частное решение уравнения будет .
Ответ: .

  1. .

. Линейное неоднородное уравнение второго порядка. Найдём сначала решение однородного уравнения Характеристическое уравнение имеет два корня: . Получаем два частных решения: . Общее решение однородного уравнения имеет вид: . Найдём частное решение неоднородного уравнения, исходя из структуры его правой части: : . Найдём производные yчн::
. . Подставим это в исходное уравнение:
. Приравнивая коэффициенты при одинаковых функциях в левой и правой частях равенства, получим: . Решая систему, находим: . Следовательно, . Общее решение неоднородного уравнения равно сумме общего решения однородного уравнения и частного решения неоднородного: .


Достарыңызбен бөлісу:
  1   2




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет