Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.
Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.
Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.
Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.
Таблица 1
Число измерений N
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
11
|
12
|
…
|
Коэффициент Стъюдента
|
6,3
|
2,9
|
2,4
|
2,1
|
2,0
|
1,9
|
1,9
|
1,9
|
1,8
|
1,8
|
1,8
|
1,8
|
5). Вычисляется полная абсолютная погрешность. При любых измерениях существуют и случайные и систематические погрешности. Расчет общей (полной) абсолютной погрешности измерения дело непростое, так как эти погрешности разной природы.
Для инженерных измерений имеет смысл суммировать систематическую и случайную абсолютные погрешности
.
Для простоты расчетов принято оценивать полную абсолютную погрешность как сумму абсолютной случайной и абсолютной систематической (приборной) погрешностей, если погрешности одного порядка величины, и пренебрегать одной из погрешностей, если она более чем на порядок (в 10 раз) меньше другой.
6). Округляется погрешность и результат. Поскольку результат измерений представляется в виде интервала значений, величину которого определяет полная абсолютная погрешность, важное значение имеет правильное округление результата и погрешности.
Достарыңызбен бөлісу: |