Показать, что точки M(4; 3), N (5; 0), Р (-5; -6) и Q (-1; 0) являются вершинами трапеции. Найти уравнение высоты трапеции, её длину.
Найти угол наклона к оси ОХ .и начальную ординату прямой .
Определить, какие из уравнений прямой являются нормальными:
Найти вершины прямоугольного равнобедренного треугольника, если даны вершина прямого угла С(3; -1) и уравнение гипотенузы .
Найти такое число , чтобы плоскость была параллельна плоскости , и определить расстояние между ними.
Построить линии пересечения координатных плоскостей с плоскостью , проходящей через точки А(1; 1; -1), В(3; -1; 1) и С(2; 3; 2), Найти угол между плоскостью и плоскостью XOZ.
Написать уравнение плоскости, проходящей через точку М(1; 1; 1) параллельно векторам ={0; 1; 2} и = {-1; 0; l}.Указать особенность в расположении плоскости.
Написать канонические уравнения прямой: .
Дан треугольник с вершинами А(3; -2; 5), В(-1.2; 3) и С(5; 4; -3). Найти угол между медианами, проведенными из вершин А, С, и их длины.