Три вершины параллелограмма имеют следующие координаты: А(-6; -4), B(-4; 8), С(-1; 5), причем А и С - противоположные вершины. Определить координаты четвертой вершины параллелограмма и уравнения его диагоналей.
Даны две точки: А(-3; 1) и B(3; -7). На оси ординат найти такую точку M, чтобы прямые AM и ВМ были перпендикулярны друг другу.
На оси ординат найти точку, одинаково удаленную от начала координат и от прямой .
Найти острый угол между прямой и прямой, проходящей через точки А(-3; 8), В(1; ). Построить указанные прямые.
Определить, при каких значениях m и n плоскости будут параллельны, и найти расстояние между ними.
Написать уравнение плоскости, параллельной оси ОУ и отсекающей на осях ОX и OZ отрезки, равные 2 и 3 ед. Найти угол между построенной плоскостью и плоскостью .
Проверить, можно ли провести плоскость через следующие четыре точки: А(1; -1; 1), В(0; 2; 4), С(1; 3; 3) и D(4; 0; -3).
Написать канонические уравнения прямой: .
Найти угол между прямыми, одна из которых задана уравнением , другая проходит через точку А(1; 2; 3) и точку пересечения указанной прямой с плоскостью .
Найти направление прямой, одновременно перпендикулярной к оси OZ и к прямой, проходящей через две точки: А(1; -1; 4) и В(-3; 2; 4).
Составить уравнение плоскости, проходящей через точку М(-3; 1; 0) и через прямую .