«Қазіргі білім берудің даму тенденциялары» халықаралық ғылыми конференцияның материалдар жинағЫ



Pdf көрінісі
бет59/79
Дата17.10.2023
өлшемі2,19 Mb.
#185969
түріСборник
1   ...   55   56   57   58   59   60   61   62   ...   79
Байланысты:
сессия зоология2, Презентация (1)
Numerical method 
1)First solve the equations (6),(9) and find
𝑢
𝑖𝑗 

,
𝑣
𝑖𝑗 

 
2)Solve equation (12) until steady state and find P 
3) Find 
𝑢
𝑖𝑗
𝑛+1
, 𝑣
𝑖𝑗
𝑛+1
equations from (10),(11) 
4) Check for convergence, if it doesn’t converge start from 
1
𝑠𝑡
step with 
new u and v. 
𝑢
𝑖𝑗
𝑛+1
−𝑢
𝑖𝑗 

+𝑢
𝑖𝑗 

−𝑢
𝑖𝑗
𝑛
∆𝑡
= −
1
𝜌
𝜕𝑃
𝜕𝑥
-u
𝜕𝑢
𝜕𝑥
− 𝑣
𝜕𝑢
𝜕𝑦
+
1
𝑅𝑒
(
𝜕
2
𝑢
𝜕𝑥
2
+
𝜕
2
𝑢
𝜕𝑦
2
)
(4) 
𝑢
𝑖𝑗
𝑛+1
−𝑢
𝑖𝑗 

∆𝑡
= −
1
𝜌
𝜕𝑃
𝜕𝑥
(5) 


Development trends of modern education 
114 
𝑢
𝑖𝑗 

−𝑢
𝑖𝑗
𝑛
∆𝑡
= −u
𝜕𝑢
𝜕𝑥

𝜕𝑣
𝜕𝑦
+
1
𝑅𝑒
(
𝜕
2
𝑢
𝜕𝑥
2
+
𝜕
2
𝑢
𝜕𝑦
2
)
(6)
– Burger’s equation 
𝑣−𝑣
𝑖𝑗 

+𝑣
𝑖𝑗 

−𝑣
𝑖𝑗
𝑛
∆𝑡
= −
1
𝜌
𝜕𝑃
𝜕𝑥
-u
𝜕𝑣
𝜕𝑥
− 𝑣
𝜕𝑣
𝜕𝑦
+
1
𝑅𝑒
(
𝜕
2
𝑣
𝜕𝑥
2
+
𝜕
2
𝑣
𝜕𝑦
2
)
(7) 
𝑣
𝑖𝑗
𝑛+1
−𝑣
𝑖𝑗 

∆𝑡
= −
1
𝜌
𝜕𝑃
𝜕𝑥
(8) 
𝑣
𝑖𝑗 

−𝑣
𝑖𝑗
𝑛
∆𝑡
= −u
𝜕𝑣
𝜕𝑥

𝜕𝑣
𝜕𝑦
+
1
𝑅𝑒
(
𝜕
2
𝑣
𝜕𝑥
2
+
𝜕
2
𝑣
𝜕𝑦
2
)
(9) 
– Burger’s equation 
𝑢
𝑖𝑗
𝑛+1
= 𝑢
𝑖𝑗 


∆𝑡
𝜌
𝜕𝑃
𝜕𝑥
(10) 
𝑣
𝑖𝑗
𝑛+1
= 𝑣
𝑖𝑗 


∆𝑡
𝜌
𝜕𝑃
𝜕𝑥
(11) 
𝜕(𝑢


∆𝑡
𝜌
𝜕𝑃
𝜕𝑥
)
𝜕𝑥
+
𝜕(𝑣


∆𝑡
𝜌
𝜕𝑃
𝜕𝑦
)
𝜕𝑦
= 0
(12) 
𝜕
2
𝑃
𝜕𝑥
2
+
𝜕
2
𝑃
𝜕𝑥
2
=
𝜌
∆𝑡
(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
)
(13) 
There are program code which describe modeling Navier-Stokes equation in 
C++. We separation our mesh 31 to 31. 
intconst N = 31, M = 31; 
int k = 0, kk = 0; 
double dx = 1.0 / (N - 1), dy = 1.0 / (M - 1), eps = pow(10, -5), Re = 
10.0, dt = 0.000025; 
In the inlet u equal to the 1 from Dirichlet condition, at the outlet condition is 
written by Newman condition.
for (inti = 0; i<= (N - 1) / 3; i++) { 
uold[0][i] = 1.0; 
unew[0][i] = 1.0; 
uhalf[0][i] = 1.0;} 
for (int j = 2.0 * (N - 1) / 3; j < N; j++) { 
unew[N - 1][j] = unew[N - 2][j]; 
uold[N - 1][j] = uold[N - 2][j]; 
uhalf[N - 1][j] = uhalf[N - 2][j];} 
do { 
for (inti = 0; i<= (N - 1) / 3; i++) { 
uold[0][i] = 1.0; 
unew[0][i] = 1.0; 


Қазіргі білім берудің даму тенденциялары 
115 
uhalf[0][i] = 1.0;} 
for (int j = 2.0 * (N - 1) / 3; j < N; j++) { 
unew[N - 1][j] = unew[N - 2][j]; 
uold[N - 1][j] = uold[N - 2][j]; 
uhalf[N - 1][j] = uhalf[N - 2][j];} 
Building speeds become zero. In the other cases implemented the folowiong 
formula: 
for (inti = 1; i< N - 1; i++) { 
for (int j = 1; j < M - 1; j++) { 
if (i>= 21 &&i<= 28 && j >= 2 && j <= 10 || i>= 12 
&&i<= 20 && j >= 12 && j <= 20 || i>= 2 &&i<= 10 && j >= 21 && j <= 28){ 
uhalf[i][j] = 0.; 
vhalf[i][j] = 0.;} 
else { 
uhalf[i][j] = uold[i][j] - dt * (uold[i][j] * (uold[i + 1][j] - uold[i - 1][j]) / (2.0 * 
dx) + vold[i][j] * (uold[i][j + 1] - uold[i][j - 1]) / (2.0 * dy) - ((uold[i + 1][j] - 2.0 * 
uold[i][j] + uold[i - 1][j]) / (dx * dx) + (uold[i][j + 1] - 2.0 * uold[i][j] + uold[i][j - 1]) 
/ (dy * dy)) / Re); 
vhalf[i][j] = vold[i][j] - dt * (uold[i][j] * (vold[i + 1][j] - vold[i - 1][j]) / (2.0 * 
dx) + vold[i][j] * (vold[i][j + 1] - vold[i][j - 1]) / (2.0 * dy) - ((vold[i + 1][j] - 2.0 * 
vold[i][j] + vold[i - 1][j]) / (dx * dx) + (vold[i][j + 1] - 2.0 * vold[i][j] + vold[i][j - 1]) 
/ (dy * dy)) / Re);}}} 
k = 0; 
do { 
for (inti = 0; i< N; i++) { 
Pold[i][0] = Pold[i][1]; 
Pnew[i][0] = Pnew[i][1]; 
for (inti = 2.0 * (N - 1) / 3; i< N; i++) { 
… } 
Pnew[i][j] = ((Pold[i + 1][j] + Pold[i - 1][j]) / (dx * dx) + (Pold[i][j + 1] + 
Pold[i][j - 1]) / (dy * dy) - ((uhalf[i + 1][j] - uhalf[i][j]) / dx + (vhalf[i][j + 1] - 
vhalf[i][j]) / dy) / dt) / (2 * (1.0 / (dx * dx) + (1.0 / (dy * dy)))); …}}} 
Illustration and descriptions of numerical results. 
All graphs represented by program tecplot .There are in the picture 1.1, 1.2 
illustration of the flow in the direction of the vector 
𝑢⃗ 
and 
𝑣 
.Re=10. u=1m/s.
The flow is calm and without any vertices.


Development trends of modern education 
116 
a) 
b) 
c) 
Picture 3. Flow a) in the direction of the vector 
𝑢
⃗ 
b)in the direction of the vector 
𝑣 
c)pressure 
when Re= 10. 
There are illustration of the flow in the direction of the vector 
𝑢⃗ 
and 
𝑣 
. Re=50. 
u=1m/s. Flow pressure. Re= 50. When Reynolds become 50 some vertices appear in 
the graph.Of the central side of graph shown vertices, which means that air remain 
there and how is affect the buildings. 


Қазіргі білім берудің даму тенденциялары 
117 
a) 
b) 
c) 
Picture 3. Flow a) in the direction of the vector 
𝑢
⃗ 
 b)in the direction of the vector 
𝑣 
 
c)pressure when Re= 50. 
 
Analysis of the results. 
From the drawing, we can see the flow of air in two-
dimensional space. The entrance is made from the lower part of the left side. And the 
exit is on the upper right side. We also see the flow of bodies with air flows. At a 
speed equal to u=1, we see a smooth flow of air around the building. You can also see 
the pressure causing on the walls of the building. When air flows through buildings, 
you can see an uneven distribution of air flow velocity. The distribution of velocity 
components u and v occurs in different directions. With Reynolds equal to 10, there 
is a smooth flow of air flow. With Reynolds equal to 50, we see the formation of 
vortices. 
Conclusion.
 
This task took about 6 hours of real time. From the drawing, we 
can see the directions of the velocity components.First, we calculate the velocity 
components with stars without using pressure.Then we calculate the pressure using 
velocity components with stars. And in the last step, we calculate speeds using 
pressure and other components.We took the values of the Reynolds number to be 10 
and 50, and Epsilon to be 10^(-5). The pressure always increased with a stable 


Development trends of modern education 
118 
difference.In this case, we use the two-dimensional Navier-Stokes equation to 
forecast the behavior of air flow. 
The Navier-Stokes equations are widely used for modeling various natural 
phenomena. Simulation of gases, air, fire and smoke, liquids and even in video games 
to describe the effects. 


Достарыңызбен бөлісу:
1   ...   55   56   57   58   59   60   61   62   ...   79




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет