Bosh muharrir o’rinbosari: Заместитель главного редактора


MUALLIM | УЧИТЕЛЬ | TEACHER



Pdf көрінісі
бет32/96
Дата14.09.2024
өлшемі32,62 Kb.
#204332
1   ...   28   29   30   31   32   33   34   35   ...   96
Байланысты:
94-27-PB

MUALLIM | УЧИТЕЛЬ | TEACHER
№4 | 2021
 
32 
of B¨ acklund transformations and other features in the group-theoretic context. Namely, a 
construction of B¨ acklund transformations (for vacuum time-dependent as well as for stationary 
axisymmetric fields) were described by Harrison [21]2, who used the pseudopotential method of 
Wahlquist and Estabrook [22]. In [21], the corresponding equations were expressed in terms of 
closed ideal of differential 1-forms. Later, Harrison described particular applications of B¨acklund 
transformations and generalized his approach to electrovacuum fields. 
A bit later, Neugebauer [25] presented his form of B¨acklund transformations for vacuum 
Einstein equations for stationary axisymmetric fields, which were constructed in the spirit of the 
known theory of B¨acklund transformations for sine-(sinh-)Gordon equation. In a short series of 
papers [25]-[27], Neugebauer found compact (determinant) form of N-fold B¨acklund 
transformations expressed in terms of the Ernst potential of some chosen beginning (or “initial”, or 
“background”) solution and of the solutions of Riccati equations with coefficients depending on this 
choice.
Exponentiating of some of Kinnersley-Chitre infinitesimal symmetries: 
HKX-transformations. Another solution generating method for vacuum fields had been found 
by C.Hoenselaers, W.Kinnersley and B.C.Xanthopoulos. This method, called later as HKX-
transformations and described in [28, 29], was derived as a result of exponentiation of some kinds 
of infinitesimal Kinnersley-Chitre transformations. The corresponding “rank p” transformations 
allow to obtain from a given initial vacuum stationary axisymmetric solution a new family of 
solutions of this type with p+ 1 arbitrary real parameter. The authors suggested also a construction 
of superposition of such transformations with different parameters and gave the simplest examples. 
Hauser and Ernst homogeneous Hilbert problem (HHP) and their integral equation method for 
effecting Kinnersley-Chitre transformations. Hauser and Ernst suggested yet another approach to 
generation of stationary axisymmetric vacuum [30], [32], [34], [35] and electrovacuum solutions. 
Within the class of solutions which are regular in some neighborhood of at least one point of the 
symmetry axis, the problem of “effecting” (i.e. exponentiating) of the Kinnersley and Chitre 
infinite-dimensional algebra of infinitesimal symmetry transformations was reduced to solution of a 
homogeneous Hilbert problem (HHP) on a closed contour on the plane of auxiliary complex 
parameter, which was reduced then to solution of a matrix linear singular integral equation of the 
Cauchy type on this contour. Solution of this integral equation for any chosen initial (“seed”) 
solution and arbitrarily selected element of Kinnersley-Chitre algebra, having been found, allows to 
calculate explicitly the transformed solution. However, the suggested in rational ansatz with too 
simple algebraic structure for solving this integral equation, had led to the class of solutions 
essentially more restricted in the number of free parameters than the class of electrovacuum 
solitons. 
Two years later, using the already mentioned above pseudopotential method of Wahlquist and 
Estabrook, Kramer and Neugebauer constructed for another set of pseudopotentials4 a linear system 
which integral condition is also provided by Einstein - Maxwell equations for stationary 
axisymmetric electrovacuum fields and then, Neugebauer and Kramer translated into the context of 
the system a constructions of soliton solutions in the spirit of inverse scattering transform, which 
was used earlier in for vacuum and in for electrovacuum fields. Nonetheless, in addition to the 
results oF, where the calculation of all components of metric (besides only the conformal factor) 
and of electromagnetic potential for electrovacuum soliton solutions have been constructed6), a 
useful input from the paper was a derivation of compact determinant expressions for the Ernst 
potentials for stationary axisymmetric electrovacuum solitons. 
The construction of B¨acklund transformations for electrovacuum Ernst equations have been 
described by Harrison. An interesting feature in this paper is an application of a modified 
Wahlquist-Estabrook approach, suitable for systems of equations, which can be expressed in terms 
of differential forms which constitute a closed ideal with constant coefficients (CC-ideal). Many 
known integral systems can be cast into such form. For these cases, it is possible to formulate 
simple general ansatzes which lead to a construction in some unified form of associated linear 




Достарыңызбен бөлісу:
1   ...   28   29   30   31   32   33   34   35   ...   96




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет