Bosh muharrir o’rinbosari: Заместитель главного редактора



Pdf көрінісі
бет35/96
Дата14.09.2024
өлшемі32,62 Kb.
#204332
1   ...   31   32   33   34   35   36   37   38   ...   96
Байланысты:
94-27-PB

Summary and conclusions 
As it is well known, the G2-symmetry-reduced vacuum Einstein equations or electrovacuum 
Einstein-Maxwell equations are integrable and admit various solution generating procedures, which 
allow to construct large families of exact solutions starting from arbitrarily chosen “beginning” (of 
“seed”, or “background”) solution. Each of such solution generating procedures can be considered 
as transformations of the corresponding solution spaces described in terms of transformations of 
“coordinates” characterizing every local solution. In the entire solution spaces of the integrable 
reductions of Einstein’s field equations, the monodromy data for the fundamental solution of 
associated “spectral problems” can be used as the “coordinates” in the infinite-dimensional solution 
spaces. 
In this paper, we considered more simple construction of such “coordinates” which exist in 
the (infinite-dimensional) subspaces of electrovacuum solutions for which the gravitational and 
electromagnetic fields possess a regular behaviour near degenerate orbits of the space-time isometry 
group G215. 
In the corresponding two-dimensional orbit space, the degenerate orbits constitute the lines 
which can be considered as the boundaries of this orbit space. In the infinite-dimensional spaces of 
solutions of these types, the values of the Ernest potentials on such boundaries in the orbit spaces 
can serve as “coordinates” of each solution. The solution generating transformations considered 


MUALLIM | УЧИТЕЛЬ | TEACHER
№4 | 2021
 
35 
above was described in terms of these “coordinates” by simple expressions in which a particular 
choice of the beginning (initial, or background) solution is not assumed. The beginning solution in 
these expressions is represented also by its boundary values of the Ernst potentials which can be 
chosen as arbitrary functions of the parameter along the boundary. It is clear that many physical 
parameters of generating solutions can be calculated directly from these boundary values of the 
Ernst potentials and the detail knowledge of the components of the solution on the whole orbit 
space is not necessary for these. Besides that, the explicit form of each of these solution generating 
procedures in terms of these “coordinates” allows to compare different suggested solution 
generating procedures, to find the relations between numerous constant parameters introduced by 
different methods as well as to determine various physical and geometrical properties of generating 
solutions (such as e.g., cylindrical wave profiles on the axis of symmetry, multipole moments of 
asymptotically flat fields, appearance of horizons in stationary axisymmetric fields and others) even 
before a detail calculation of all components of generated solution. 
It is necessary to note that in this paper we have not discussed the known methods of the other 
type (also based on the integrability of the equations under consideration) which allow a direct 
construction of multiparametric families of solutions, but which do not admit arbitrary choice of 
some beginning (background) solution. Among these, we can mention the methods for construction 
of solutions for boundary value problems. 
Some examples of such subspaces of solutions are cylindrical waves, stationary axisymmetric 
fields created by compact sources and considered near some intervals on the axis between or 
outside the sources, some cosmological-like solutions, plane waves near the “focusing 
singularities”, solutions with Killing horizons and some others. 
Besides that, there exist the integral equation methods for a direct construction of solutions. 
Among these, there is a scalar linear integral equation method which was suggested by 
N.Sibgatullin [53] for construction of stationary axisymmetric electrovacuum fields. Actually, 
Sibgatullin started from the solution generating method suggested earlier by Hauser and Ernst for 
effecting Kinnersley-Chitre transformations and reduced considerably their matrix linear singular 
integral equation to a scalar one, using the choice of Minkowski spacetime as the initial solution. 
During the last decades the Sibgatullin’s integral equation was used frequently enough in the 
literature by some authors for construction of particular stationary axisymmetric asymptotically flat 
solutions with various rational structures of the Ernst potentials on the axis. 
Another method of direct construction of solutions of integral reductions of Einstein’s field 
equations (not only for the case of electrovacuum) which we do not discuss here, is the monodromy 
transform approach. 
This approach is also based on a reformulation of integral reductions of Einstein’s field 
equations in terms of a linear singular integral equations, but in contrast to the Hauser and Ernst 
approach, the construction of these integral equations does not assume any restrictions on the entire 
space of local solutions of these field equations. One of general applications of this approach, which 
can be found in [54], is a construction in a unified (determinant) form of a huge class of 
electrovacuum solutions with arbitrary rational structure of the Ernst potentials on degenerate orbits 
of space-times isometry group G2. This class includes hierarchies of soliton and non-soliton 
solutions, stationary axisymmetric solutions (which are not necessary asymptotically flat), as well 
as various types of waves and cosmological solutions which admit G2-symmetry. Using this 
method, more singular types of solutions for interacting waves and inhomogeneous cosmologies 
were found. 


Достарыңызбен бөлісу:
1   ...   31   32   33   34   35   36   37   38   ...   96




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет