MUALLIM | УЧИТЕЛЬ | TEACHER
№4 | 2021
36
[2] G. A. Alekseev, “Integrable and non-integrable structures in EinsteinMaxwell equations with
Abelian isometry group G2”, Proc. Steklov Inst. Math., 295, pp. 1-26 (2016)
[3] J.Ehlers, Konstruktionen und Charakterisierungen von Lo¨sungen
der Einsteinschen
Gravitationsfeldgleichungen.Dissertation, Hamburg(1957)
[4] J. Ehlers, in Les theories relativistes de la gravitation, (CNRS, Paris,1959).
[5] B.K. Harrison, New solutions of the Einstein-Maxwell equations from old, JMP 9, p. 1744
(1968)
[6] D.Kramer and G.Neugebauer, Eine exakte station?are L?osung
der Einstein-Maxwell-
Gleichungen, Ann. Phys. (Germany) 24, 59 (1969)
[7] W.Kinnersley, Generation of stationary Einstein-Maxwell fields JMP 14, 651 (1973)
[8] R. Geroch, A Method for Generating Solutions of Einstein’s Equations, J.Math.Phys. 13, 394
(1972).
[9] W. Kinnersley, Symmetries of the stationary Einstein-Maxwell field equations. I, J. Math. Phys.
18, 1529 (1977).
[10] W. Kinnersley and D. M. Chitre, Symmetries of the stationary
EinsteinMaxwell field
equations. II, J. Math. Phys. 18, 1538-1542 (1977).
[11] W. Kinnersley and D. M. Chitre, Symmetries of the stationary EinsteinMaxwell field
equations. III, J. Math. Phys. 19, 1926-1931 (1978).
[12] W. Kinnersley and D. M. Chitre, Symmetries of the stationary EinsteinMaxwell field
equations. IV. Transformations which preserve asymptotic flatnessa, J. Math. Phys. 19, 2037-2042
(1978).
[13] B. Julia, Application of supergravity to gravitation theory, in Unified Field Theories of more
than 4 Dimensions, including Exact Solutions, edited by V. de Sabbata and Ernst Schmutzer (World
Scientific Press, Singapore, 1983) p. 215-233.