Нормальные системы линейных однородных дифференциальных
уравнений с постоянными коэффициентами.
При рассмотрении систем дифференциальных уравнений ограничимся случаем системы трех уравнений (n = 3). Все нижесказанное справедливо для систем произвольного порядка.
Определение. Нормальная система дифференциальных уравнений c постоянными коэффициентами называется линейной однородной, если ее можно записать в виде:
(2)
Решения системы (2) обладают следующими свойствами:
1) Если y, z, u – решения системы, то Cy, Cz, Cu , где C = const – тоже являются решениями этой системы.
2) Если y1, z1, u1 и y2, z2, u2 – решения системы, то y1 + y2, z1 + z2, u1 + u2 – тоже являются решениями системы.
Решения системы ищутся в виде:
Подставляя эти значения в систему (2) и перенеся все члены в одну сторону и сократив на ekx, получаем:
Для того, чтобы полученная система имела ненулевое решение необходимо и достаточно, чтобы определитель системы был равен нулю, т.е.:
В результате вычисления определителя получаем уравнение третьей степени относительно k. Это уравнение называется характеристическим уравнением и имеет три корня k1, k2, k3. Каждому из этих корней соответствует ненулевое решение системы (2):
Линейная комбинация этих решений с произвольными коэффициентами будет решением системы (2):
Пример. Найти общее решение системы уравнений:
Составим характеристическое уравнение:
Решим систему уравнений:
Для k1:
Полагая (принимается любое значение), получаем:
Для k2:
П олагая (принимается любое значение), получаем:
Общее решение системы:
Этот пример может быть решен другим способом:
Продифференцируем первое уравнение:
Подставим в это выражение производную у¢ =2x + 2y из второго уравнения.
Подставим сюда у, выраженное из первого уравнения:
Обозначив , получаем решение системы:
Пример. Найти решение системы уравнений
Эта система дифференциальных уравнений не относится к рассмотренному выше типу, т.к. не является однородным (в уравнение входит независимая переменная х).
Для решения продифференцируем первое уравнение по х. Получаем:
Заменяя значение z’ из второго уравнения получаем: .
С учетом первого уравнения, получаем:
Решаем полученное дифференциальное уравнение второго порядка.
Общее решение однородного уравнения:
Теперь находим частное решение неоднородного дифференциального уравнения по формуле
Общее решение неоднородного уравнения:
П одставив полученное значение в первое уравнение системы, получаем:
Пример. Найти решение системы уравнений:
Составим характеристическое уравнение:
k = -1.
Если принять g = 1, то решения в этом случае получаем:
k2 = -2.
Если принять g = 1, то получаем:
k3 = 3.
Если принять g = 3, то получаем:
О бщее решение имеет вид:
Достарыңызбен бөлісу: |