1.4. Үш белгісізі бар екінші дәрежелі теңдеулерді шешуге арналған мысалдар.
1 – мысал. x2 + y2 = z2 (1) теңдеуі берілсін.
Бұл есептің геометриялық шешімі катеттері х, у гипотенузасы z бүтін сандар болатын барлық тік бұрышты үшбұрыштарды табу. Мұндағы х, у сандарының ең үлкен ортақ бөлімін d арқылы белгілейік: d = (х, у), сонда
x = x1d, y = y1d
және (1) теңдеу мына түрге келеді:
x1 2 d 2 + y1 2 d 2 = z 2
Бұл теңдеуден z 2 санының d 2 санына бөлінетіні көрініп тұр, демек z = z1 d.
x1 2 d 2 + y1 2 d 2 = z12 d 2
Теңдіктің екі жағын да d 2 санына бөліп жіберсек,
x1 2 + y1 2 = z12
теңдеуін аламыз. Біздің соңғы теңдеуіміз бастапқы теңдеуге келеді, бірақ х1 және у1 сандарының бірден басқа ортақ бөлгіші жоқ. Сондықтан (1) теңдеуді шешкенде x, y өзара жай сандар деген шешіммен шектелуге болады. Сонда (х, у) = 1 болсын, демек, х немесе у мәндерінің ең болмағанда біреуін тақ деуге болады.Теңдеудің оң жағына y2 белгісізін өткізейік:
x2 = z2 - y2 , x2 =(z+у)(z–у), (2)
d1 = (z+у, z -у) болсын, сонда
z+у = а d1, z–у = bd1, (3)
мұндағы a, b - өзара жай сандар. Ал (3) теңдіктің мәндерін (2) – теңдеуге қойсақ:
x2 = a b d12,
a, b сандарының ортақ бөлгіші болмағандықтан, бұл теңдік a, b толық квадрат болғанда ғана орындалады. Сондықтан біз a = u2, b = v2 деп белгілейміз. Сонда
x2 = u2 v2 d12 және x = u v d1 (4)
Енді (3) теңдіктен y және z мәндерін табайық:
2z = ad1 + bd1 = u2 d1 + v2 d1, (5)
2y = ad1 - bd1 = u2 d1 - v2 d1, (6)
х тақ болғандықтан u, v және d1 сандарын да тақ деп алайық. d1 = 1 болады, себебі: x = u v d1 және теңдіктерінен х және y сандарының ортақ бөлгіші d1 ≠ 1 десек, онда олардың жай сан екеніне қарсы келеміз. Мұндағы u және v өзара жай a және b сандарымен байланысты, сондықтан u және v өзара жай сандар және (3) теңдіктен b < a екендігі шығады, демек, v < u. Сонда 4 – 6 теңдіктеріне d1 = 1 мәнін қойсақ, мына формулаларды аламыз:
Достарыңызбен бөлісу: |