саны да құрама болады, оның әрбір көбейткіші 1-ден үлкен, ал болғанда . Демек, егер жай сан болса, онда теңдігі ешқандай мәні үшін орындалмайды.
Тақтада
теңдеуі жазылған. Екі ойыншы ойын ойнап жатыр. Бірінші ойыншы кез-келген бос орынға нөлден өзге бүтін санды жазады. Одан соң екінші ойыншы қалған бос орынның біреуіне бүтін сан жазады. Ақыры, бірінші ойыншы соңғы бос орынға бүтін сан жазады. Екінші ойыншының жүрісіне байланыссыз, шыққан теңдеудің 3 түбірі де бүтін сандар болатындай етіп бірінші ойыншы ойнай алатынын дәлелдеңдер.
Достарыңызбен бөлісу: |