x = u v, ,, (7)
Мұндағы u және v өзара жай тақ сандар және v < u (7) формуладағы бастапқы u, v мәндері көбіне жиі кездесетін мына теңдіктерді құрайды:
32 + 42 = 52 (v =1, u = 3),
52 + 122 = 132 (v =1, u = 5),
152 + 82 = 172 (v =3, u = 5).
(7) формула (1) теңдеудің x, y, z сандарының ортақ бөлгіші болмағандығы шешімдерін береді. Ал (1) теңдеудің қалған шешімдері (7) формуланы қамтитын шешімдерді кез – келген ортақ көбейткіш d санына көбейткеннен шығады.
2 – мысал. x2 + 2y2 = z2 (8) теңдеуінің барлық шешімдерін табайық.
x, y, z (8) теңдеудің шешімдері болып, бірден басқа өзара ортақ бөлгіші болмаса, олар екеуара жай болады. Шындығында, егер х және y жай р санына бөлінсе, р > 2, онда
теңдігінің сол бөлігі бүтін сан және z р санына бөлінетіндігі шығады. Ал х және z немесе y және z р санына бөлінсе де солай болады.
Достарыңызбен бөлісу: |