Интеграл(лат. іnteger – бүтін)



бет1/3
Дата04.03.2020
өлшемі248,1 Kb.
#59538
  1   2   3
Байланысты:
Интеграл

Интеграл(лат. іnteger – бүтін) –

математиканың маңызды ұғымдарының бірі. Интеграл ұғымы бір жағынан – туындысы бойынша функцияны іздеу (мысалы, қозғалған нүктенің жүріп өткен жолын өрнектейтін функцияны сол нүктенің жылдамдығы бойынша табу), екінші жағынан – аудан, көлем және доға ұзындығын өлшеу, күштің белгілі бір уақыт ішінде атқарған жұмысын табу, т.б. қажеттіліктерден пайда болды. Осыған қатысты интеграл анықталмаған интеграл және анықталған интеграл болып ажыратылады. Міне, осыларды есептеу интегралдық есептеудің міндеті болып саналады. «Интеграл» сөзін алғаш рет (1690) швейцариялық ғалым Якоб Бернулли қолданған;

өзінің шексіз аз бөліктерінің қосындысы түрінде қарастырылатын бүтін шама.

Мазмұны

1 Интегралдау

1.1 Анықталған интеграл.

2 Интегралдық косинус

3 Интегралдық логарифм

4 Интегралдық синус

5 Тағы қараңыз

6 Дереккөздер

Интегралдау

Анықталмаған интегралды іздеу амалы немесе дифференциалдық теңдеулерді шешу.

Осыған сай дифференциалдау формулалары мен ережелеріне сүйене отырып, интегралдаудың формулалары мен ережелерін алуға болады.

Анықталған интеграл.

y = f(x) теңдеуімен анықталған үздіксіз сызықтың доғасымен, Ox осінің AB кесіндісімен және AD, BC ординаталарымен қоршалған ABCD «қисық сызықты трапециясының» ауданын (S) табу керек болсын (суретті қ.). Ол үшін [a, b] кесіндісін a =x0

S ≈ Sn= f(ξ1)Δx1+ f(ξ2) Δx2+...+ f(ξn) Δxn, немесе оны қосынды белгісін (Σ) пайдалана отырып, былайша жазуға болады:

S ≈ Sn.


Бұл жерде [a, b] кесіндісі ұзындықтары неғұрлым кіші аралықтарға бөлінсе, Sn қосындысы ізделіп отырған ауданның шын мәніне (S-ке) солғұрлым жуық болып келеді. Демек S, бөлу нүктелерінің саны (n) шексіздікке, Δx-тың ең үлкен мәні нөлге ұмтылғанда, Sn қосындысының ұмтылатын белгілі шегі болады. Анықтама бойынша осы шек анықталған интеграл деп аталып: түрінде жазылады, мұндағы ∫ белгісі (латынның summa (ſumma) сөзінің созылыңқы етіп жазылған бірінші әрпі) – интегралдың таңбасы; f(x) – интеграл астындағы функция; a және b сандары – интегралдың төменгі және жоғарғы шектері. Жалпы жағдайда, кез келген үздіксіз f(x) функциясының анықталған интегралы Sn қосындысының ұмтылатын шегі ретінде анықталады. Бірақ Sn-ді геометриялық фигураның ауданы деп түсіну шарт емес. Егер a=b болса, онда анықтама бойынша: ; ал Жоғарғы шектің интегралдау функциясы ретінде қарастырылатын: анықталған интегралы (жоғарғы шегі айнымалы интеграл), интеграл астындағы f(x) функциясының бір алғашқы функциясы болады, яғни:

Бұдан интегралдық есептеудің негізгі теоремасы (Ньютон–Лейбниц формуласы) шығады: мұндағы F(x) – f(x) функциясының кез келген алғашқы функциясы. Бұл формула берілген анықталған интегралды есептеуге арналған негізгі амалдардың бірі. Анықталған интеграл арқылы жазық фигуралардың ауданы, қисық сызықтардың ұзындығы, дененің көлемі мен беті, ауырлық центрінің координаттары, инерция моменттері, берілген күштің атқаратын жұмысы, т.б. жаратылыстану мен техника есептері шешіледі. Интеграл ұғымы көп айнымалысы бар функцияларға да қолданылады. Интегралдық есептеудің аудан мен көлемді табуға байланысты бірқатар есептерін ежелгі грек математиктері шешкен. 9 – 15-ғасырларда Орта және Таяу Шығыс ғалымдары Архимед еңбектерін араб тіліне аударып, ежелгі математиканың табыстарын кейінгі ұрпақтарға жеткізді. Бірақ оларды одан әрі дамыта алмады. Тек 16 – 17-ғасырларда ғана табиғаттану ғылымдарының жетістіктері интегралдық есептеудің одан әрі дамуын қажет етті. Интегралдық есептеудің негізгі ұғымдары мен идеялық жүйесін бір-біріне тәуелсіз түрде Исаак Ньютон мен Готфрид Лейбниц жасады. «Интегралдық есептеу» термині мен интеграл таңбасы Лейбництен бастап қолданылып келеді. Интегралдық есептеудің әрі қарай дамуы швейцариялық математик Иоганн Бернуллидің, әсіресе, Леонард Эйлердің есімдерімен тығыз байланысты. 19-ғасырдың басында француз математигі Огюстен Луи Коши шектер теориясы негізінде интегралдық есептеу мен дифференциалдық есептеуді қайта құрды. Интегралдық есептеуді дамытуға 19-ғасырда орыс ғалымдары Михаил Остроградский, Виктор Буняковский және Пафнутий Чебышев үлкен үлес қосты. 19-ғасырдың аяғында және 20-ғасырдың басында жиын теориясының дамуы интегралдық есептеудің негізгі ұғымдарының тереңдеуіне және кеңеюіне себеп болды.



Интегралдық косинус

Интегралымен анықталатын арнаулы функция. Мұны математикалық анализге италиялық математик Лоренцо Маскерони енгізген. Интегра́льный ко́синус — специальная функция, определяемая интегралом[1]

Сi(x)=-dt

или:


где — постоянная Эйлера-Маскерони.

Иногда используются другие определения:

Cin(x)=

Cin(x)=

Также возможно определение интегрального косинуса через интегральную показательную функцию по аналогии с обычным косинусом



{\displaystyle \operatorname {Ci} (x)={\frac {1}{2}}\left(\operatorname {Ei} (ix)+\operatorname {Ei} (-ix)\right)}{\displaystyle \operatorname {Ci} (x)={\frac {1}{2}}\left(\operatorname {Ei} (ix)+\operatorname {Ei} (-ix)\right)}

Интегральный косинус был введён Лоренцо Маскерони в 1790 году.

Свойства


Интегральный косинус может быть представлен в виде ряда:



Интегралдық логарифм

Интегралымен анықталатын арнаулы функция. Мұны математикалық анализге 1768 ж. швейцариялық ғалым Леонард Эйлер енгізген.

Распространённые интегралы с логарифмами:

Интеграл от натурального логарифма:

∫ lnx dx = ∫ log(x)/log(e) dx = x*ln(x) - x

Интеграл от любого другого логарифма:

∫ logx dx = ∫ ln(x)*log(e) dx = (x*ln(x) - x)*log(e) = x*log(x) - x*log(e)

Интеграл от логарифма в квадрате:

∫ (ln(x))^2 dx = x*(ln(x)^2 -2 ln(x) + 2)

Интегралдық синус

Интегралымен анықталатын арнаулы функция. Мұны математикалық анализге (1790) италиялық математик Л. Маскерони енгізген.






Достарыңызбен бөлісу:
  1   2   3




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет