Методы решения целых алгебраических уравнений Разложение на множители



бет7/8
Дата14.12.2021
өлшемі40,8 Kb.
#126422
түріРешение
1   2   3   4   5   6   7   8
Байланысты:
1 Методы решения целых алгебраических уравнений

Пример №182.

При каких значениях а все корни уравнения являются корнями уравнения



Решение:

Чтобы первое из уравнений имело корни, необходимо, чтобы его дискриминант был неотрицателен, т.е.



Далее, второй многочлен в силу теоремы Безу должен делиться нацело на первый многочлен. Иными словами, должно найтись такое b , что при всех действительных x справедливо тождество



Для нахождения неопределённых коэффициентов (в данном случае в их роли выступают а и b ) воспользуемся известным фактом, что два кубических многочлена, стоящие по разные стороны от знака равенства, тождественно равны тогда и только тогда, когда равны коэффициенты при одинаковых степенях переменной x . Приравнивая эти коэффициенты, получаем систему уравнений







Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет