а
б
|
|
|
в
|
Рис.12 Характер поведения деформаций объема () кварцевых песчаников при неравномерных объемных напряжениях ()
По оси Y - - объемные деформации, [%]
По оси Х - - неравномерные средние объемные напряжения [Мпа]
|
В связи с этим, при сопровождении работ по ГРП (или любом другом воздействии на призабойную зону пласта) предлагается двухкратное исследование ВАКом - до и после воздействия.
На основании первого замера ВАК (до ГРП) решаются следующие задачи:
оценка технического состояния скважины (качество цементирования, состояние колонны, степень гидродинамической связи пласта со скважиной в зоне перфорации);
оценка свойств коллекторов в интервале воздействия (нефтенасыщенность, интервалы со свободным газом, фильтрационно-емкостные свойства, тип коллектора, а также его упруго-деформационные параметры, необходимые при проектировании ГРП);
обоснование места посадки пакера, а при поинтервально-направленном ГРП – проектирование мест щелевой перфорации.
Данная информация позволяет спроектировать ГРП с учетом поставленной геологической задачи (воздействовать на целевые интервалы разреза), режимы проведения ГРП адаптировать к выявленным особенностям технического состояния скважины (зазоры за колонной, негерметичности колонны) и геологического разреза (наличие вблизи интервала воздействия пластов с аномальными свойствами – обычно водо- или газонасыщенных)
Второй замер ВАК (после ГРП) совместно с результатами первого дает следующую информацию:
оценка технического состояния скважины (качество цементирования, состояние колонны, степень Г/Д связи пласта со скважиной в зоне перфорации)
оценка изменения свойств коллекторов в интервале воздействия (высоты зон баровоздействия и собственно трещины ГРП с местом входа основного объема пропанта, степень нарушенности подстилающих и перекрывающих экранов; определение примерной ориентировки трещин)
оценка необходимости корректирующего воздействия (повторное ГРП, обработка трещины химическим реагентом и т.д.)
На рис. 13 приведен пример геофизического планшета по скважине, где были выполнены замеры ВАК до и после ГРП. Совокупность всей информации полученной при сопровождении ГРП методом ВАК составляет «геофизический образ ГРП». В данной скважине по первому замеру ВАК была определена текущая нефтенасыщенность целевого пласта Бб2, а также было выявлено, что вышезалегающий пласт Бб1 насыщен водой с газом. Эта информация позволила выбрать оптимальное место для расположения пакера, чтобы предотвратить нарушение перемычки между пластами и прорыв газа в пласт Бб2.
Второй замер ВАК в этой скважине, выполненный после проведения ГРП, позволил подтвердить, что перемычка осталась ненарушенной. Также выделен общий интервал барического воздействия (пока еще не учитывающийся при проектировании ГРП), где породы изменили свои свойства, а также интервал основного входа проппанта в созданную трещину разрыва, где породы претерпели существенное изменение своих петрофизических и упруго-деформационных свойств и возникла интенсивная гидродинамическая связь между скважиной и продуктивным пластом.
Рис. 13 Геофизический образ ГРП.
Применение стандартной акустической аппаратуры с монопольным излучателем, типа АКВ, пока не позволяет провести оценку ориентации естественных трещин или трещин ГРП по сторонам света. Однако, по характеру изменения упругих модулей, происходящих вследствие развития в породах напряжений от ГРП есть возможность оценить вид возникших в пласте деформаций. Направленность последних обусловлена характером текстурных преобразований протекающих в породах и , в частности, развитием техногенных микро- и макротрещин различной ориентировки. Как известно (Р.Э. Дамко 1987, А.Николя 1992 г. и др.) в зависимости от общего напряженного состояния и соотношений нормальных и касательных напряжений в горных породах получают развитие трещины субгоризонтальной, субвертикальной либо смешанной ориентировки.
Для этого предлагается использовать диаграмму деформаций пород и ориентировки трещин в зависимости от изменений объемной сжимаемости и модуля сдвига ( рис. 14)
Рис.14. Диаграмма деформации пород при изменении
сдвиговых и объемных напряжений.
Таким образом, имея записи двух замеров ВАК можно рассчитать изменения упругих модулей, происходящие вследствие барического воздействия на пласт, оценить вид развивающихся в нем деформаций и преобладающую ориентировку техногенных трещин относительно оси скважины (рис. 14).
Кроме того, определяемый по данным ВАК параметр гидродинамической связи – Пгдс позволяет не только выявлять места связи пластов со скважиной (открытый ствол, перфорированный интервал), но и выполнять контроль мест и качество выполненных работ по перфорации. В качестве примера на рис. 15 приведены кривые Пгдс полученные по материалам ВАК, в скважинах после проведения гидропескоструйной перфорации (ГПП), в результате которой на основании теоретических расчетов и лабораторных исследований, за эксплуатационной колонной должны образовываться щели/каверны глубиной и высотой не менее 400 х 400 мм. На рисунках точками показаны планировавшиеся места ГПП, а справа от них кривые Пгдс. Из рис.15а видно, что зарезки щелей в скважине были выполнены точно по намечавшимся местам и высота щелей соответствует рассчитанной, а вот глубина их по мере перемещения вверх снижается почти в 2 раза. На рис. 15б показано, что в данном случае, с одной стороны, при работе по ГПП была некачественно выполнена привязка перфоратора по глубине скважины – нижняя точка не совпадает с соответствующей ей отрицательной аномалией на кривой Пгдс, и с другой стороны – отмечено, что верхняя щель в скважине вообще не прорезана (экспертиза инструмента на поверхности отметила разрушение насадки перфоратора). Из этих примеров следует, что для качественного выполнения ГПП необходимо правильно подбирать насадку пескоструйного перфоратора соответственно используемому в работе абразивному материалу.
а
б
Рис.15 Контроль гидропескоструйной перфорации по кривой Пгдс.
Выводы
Волновой акустический каротаж позволяет за одну спуско-подъемную операцию получить комплексную информацию о свойствах пласта и скважины, что эквивалентно применению 4-х отдельных методов ГИС.
Сопровождение работ по ГРП (а также любого физического или физико-химического способа ПНП) методом ВАК обеспечивает информационную базу, необходимую для эффективного проектирования технологии и выполнения ГРП и позволяет оценить качество выполненной работы. В сочетании с ВСП данные метода ВАК позволяют спрогнозировать в пределах залежи ориентировку по сторонам света развития техногенных трещин разрыва.
Достарыңызбен бөлісу: |