Реферат по дисципление: «Схемотехника и электроника» на тему: «Фотодиод» Таиров. С. С проверил: Жумахан. Н. Н



бет1/4
Дата10.12.2022
өлшемі196,27 Kb.
#162191
түріРеферат
  1   2   3   4
Байланысты:
фотодиод
Реферат та ырыбы Ойлауды философиялы т рі сын ж не к м ндау , 124

Министерство образование и науки республики Казахстан
АО «Алматинский технологический университет»
Факультет инжиниринга и информационных технологий

РЕФЕРАТ
по дисципление: «Схемотехника и электроника»


на тему: «Фотодиод»

Выполнил: Таиров.С.С


Проверил:Жумахан.Н.Н

Алматы 2022



Содержание
1.Введение……………………………………………………………………….3

2.Режимы работы………………………………………………………………..6

3.Основная часть………………………………………………………………...7
4.Фотодиод……………………………………………………………………….8
5.Принцип работы……………………………………………………………….8
6. Параметры и характеристики фотодиодов………………………………….9
7. Классификация ………………………………………………………………10
4.Заключение…………………………………………………………………….11
5.Список использованных источников………………………………................12

Введение
Фотодиодами называют обычные полупроводниковые диоды, но преобразовывающие свет в электричество. Это те же солнечные батареи, а также элементы, реагирующие на освещенность в разнообразных реле, датчиках, микросхемах, а особенно в оптоволоконных системах, оборудовании с привязкой к свету (УФ, ИК), его интенсивности. В этих же сферах используются светодиоды, фототранзисторы, фоторезисторы, но их и чертежи для них следует отличать.


Простейший фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.
В равновесном состоянии, когда поток излучения полностью отсутствует, концентрация носителей, распределение потенциала и энергетическая зонная диаграмма фотодиода полностью соответствуют обычной p-n-структуре.
При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в результате поглощения фотонов с энергией, большей, чем ширина запрещенной зоны, в n-области возникают электронно-дырочные пары. Эти электроны и дырки называют фотоносителями.
При диффузии фотоносителей в глубь n-области основная доля электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Здесь фотоносители разделяются электрическим полем p–n-перехода, причем дырки переходят в p-область, а электроны не могут преодолеть поле перехода и скапливаются у границы p–n-перехода и n-области.
Таким образом, ток через p–n-переход обусловлен дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей называется фототоком.
Ф отоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область отрицательно по отношению к p-области. Возникающая разность потенциалов называется фотоЭДС Eф. Генерируемый ток в фотодиоде – обратный, он направлен от катода к аноду, причем его величина тем больше, чем больше освещенность.
Фотодиоды могут работать в одном из двух режимов – без внешнего источника электрической энергии (режим фотогенератора) либо с внешним источником электрической энергии (режим фотопреобразователя).
Фотодиоды, работающие в режиме фотогенератора, часто применяют в качестве источников питания, преобразующих энергию солнечного излучения в электрическую. Они называются солнечными элементами и входят в состав солнечных батарей, используемых на космических кораблях.
КПД кремниевых солнечных элементов составляет около 20 %, а у пленочных солнечных элементов он может иметь значительно большее значение. Важными техническими параметрами солнечных батарей являются отношения их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти параметры достигают значений 200 Вт/кг и 1 кВт/м2, соответственно.
При работе фотодиода в фотопреобразовательном режиме источник питания Е включается в цепь в запирающем направлении (рис. 1, а). Используются обратные ветви ВАХ фотодиода при различных освещенностях (рис. 1,б).

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а - схема включения, б - ВАХ фотодиода
Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам пересечения ВАХ фотодиода и линии нагрузки, соответствующей сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 - 30 мкА, у кремниевых 1 - 3 мкА.
Если в фотодиодах использовать обратимый электрический пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а следовательно, и чувствительность значительно возрастут.
Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).
Лавинные фотодиоды являются быстродействующими фотоэлектрическими приборами, их частотный диапазон может достигать 10 ГГц. Недостатком лавинных фотодиодов является более высокий уровень шумов по сравнению с обычными фотодиодами.

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) характеристики фоторезистора
Кроме фотодиодов, применяются фоторезисторы (рис 2), фототранзисторы и фототиристоры, в которых используется внутренний фотоэффект. Характерным недостатком их является высокая инерционность (граничная рабочая частота fгр < 10 - 16 кГц), что ограничивает их применение.

Конструкция фототранзистора подобна обычному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с двумя стрелками, направленными к нему.
Светодиоды и фотодиоды часто используются в паре. При этом они помещаются в один корпус таким образом, чтобы светочувствительная площадка фотодиода располагалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», называются опторонами (рис. 3).

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод
Входные и выходные цепи в таких приборах оказываются электрически никак не связанными, поскольку передача сигнала осуществляется через оптическое излучение.
Принцип работы фотодиодов
Основа действия фотодиодных элементов – внутренний фотоэффект. Он заключается в возникновении в полупроводнике под воздействием светового потока неравновесных электронов и дырок (т.е. атомов с пространством для электронов), которые формируют фотоэлектродвижущую силу.
При попадании света на p-n переход происходит поглощение световых квантов с образованием фотоносителей
Фотоносители, находящиеся в области n, подходят к границе, на которой они разделяются под влиянием электрополя
Дырки перемещаются в зону p, а электроны собираются в зоне n или около границы
Дырки заряжают p-область положительно, а электроны – n-зону отрицательно. Образуется разность потенциалов
Чем выше освещенность, тем больше обратный ток
Если полупроводник находится в темноте, то его свойства аналогичны обычному диоду. При прозванивании тестером в отсутствии освещения результаты будут аналогичны тестированию обычного диода. В прямом направлении будет присутствовать маленькое сопротивление, в обратном – стрелка останется на нуле.
Схема фотодиода


  • Режимы работы

Фотодиоды разделяют по режиму функционирования.
Режим фотогенератора
Осуществляется без источника электропитания. Фотогенераторы, являющиеся комплектующими солнечных батарей, иначе называют «солнечными элементами». Их функция – преобразовывать солнечную энергию в электрическую. Наиболее распространены фотогенераторы, созданные на базе кремния – дешевого, распространенного, хорошо изученного. Обладают невысокой стоимостью, но их КПД достигает всего 20%. Более прогрессивными являются пленочные элементы.
Режим фотопреобразования
Источник электропитания в схему подключается с обратной полярностью, фотодиод в данном случае служит датчиком освещенности.
Основные параметры
Свойства фотодиодов определяют следующие характеристики:
Вольтамперная. Определяет изменение величины светового тока в соответствии с меняющимся напряжением при стабильных потоке света и темновом токе
Спектральная. Характеризует влияние длины световой волны на фототок
Постоянная времени – это период, в ходе которого ток реагирует на увеличение затемнения или освещенности на 63% от установленного значения
Порог чувствительности – минимальный световой поток, на который реагирует диод
Темновое сопротивление – показатель, характерный для полупроводника при отсутствии света
Инерционность
Из чего состоит фотодиод?

  1   2   3   4




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет