Теорема. Если одна из двух параллельных прямых перпендикулярна к плоскости, то и другая прямая перпендикулярна к этой плоскости.
Дано: а ‖ а1, а ⊥ α
Доказать, что а1 ⊥ α
Доказательство:
Проведем какую-нибудь прямую x в плоскости α.
x ∊ α Так как а ⊥ α, то а ⊥ x.
По лемме о перпендикулярности двух параллельных прямых к третьей а1 ⊥ x.
а1 ⊥ x (по лемме о перпендикулярности двух параллельных прямых к третьей)
Таким образом, прямая а1 перпендикулярна к любой прямой, лежащей в плоскости α, т. е. а1 ⊥ α. Теорема доказана.
Докажем обратную теорему.
Теорема. Если две прямые перпендикулярны к плоскости, то они параллельны.
Дано: а ⊥ α, b ⊥ α
Доказать, что а ‖ b
Доказательство:
Через какую-нибудь точку М прямой b проведем прямую b1, параллельную прямой а.
М ∊ b, M ∊b1, b1 ‖ a По предыдущей теореме b1 ⊥ α.
Докажем, что прямая b1 совпадает с прямой b. Тем самым будем доказано, что а ‖ b. Допустим, что прямые b1 и b не совпадают. Тогда в плоскости β, содержащей прямые b и b1, через точку М проходят две прямые, перпендикулярные к прямой с, по которой пересекаются плоскости α и β. Но это невозможно, следовательно, а ‖ b.
b ∊ β, b1 ∊ β, α β=c (невозможно)→ а ‖ b.
IV. Закрепление материала.
Задача №120.
Через точки P и Q прямой РQ проведены прямые, перпендикулярные к плоскости α и пересекающие её соответственно в точках P1 и Q1. Найдите P1Q1, если PQ = 15 cм; PP1 = 21,5 cм; QQ1 = 33,5 cм.
Решение:
1) PP1 ⊥ α и QQ1 ⊥ α по условию ⇒ PP1 ∥ QQ1 (обосновать);
2) PP1 и QQ1 определяют некоторую плоскость β, α ⋂ β = P1Q1;
3) PP1Q1Q - трапеция с основаниями PP1 и QQ1, проведём PK ∥ P1Q1;
4) QK = 33,5 - 21,5 = 12 (см)
P1Q1 = PK =
|
|
= 9 см.
|
Ответ: P1Q1 = 9 см.
Домашнее задание. №122
В прямоугольном параллелепипеде ABCDA1B1C1D1
АВ = 9 см; ВС = 8 см; ВD = 17 см.
Найдите площадь BDD1B1.
Достарыңызбен бөлісу: |