ПОӘК 042-39 14/03-2013 №1 басылым 18. 09. 2013ж


-шы дәріс: Сызықты емес теңдеулерді. Түбір жатқан аралықты анықтау әдісі



бет68/144
Дата08.09.2017
өлшемі12,72 Mb.
#31324
1   ...   64   65   66   67   68   69   70   71   ...   144
9-шы дәріс: Сызықты емес теңдеулерді. Түбір жатқан аралықты анықтау әдісі

Дәріс жоспары:



  1. Сызықты емес теңдеулер түрі

  2. Сызықты емес теңдеуді сандық шешу тәсілдері.

  3. Бір өлшемді сызықты емес теңдеуді шешудің тәсілдері.

  4. Түбір жатқан аралықты анықтау әдісі

Сызықты емес теңдеулерді және теңдеулер жүйесін шешудің сандық әдістері

Дәріс тезисі:

Сандық әдістердің бір бөлімі «бір өлшемді сызықты емес теңдеулер» болып табылады. Физикалық және басқа да құбылыстардың теңдеумен сипатталатыны белгілі. Сол теңдеуді классикалық математикалық формуламен шешу мүмкін емес жағдайлар бар. Бұл уақытта практикада сандық әдістерге жататын әдістермен шешілетінін дәлелдеу керек. Әрине ең алдымен құрылған теңдеудің қай аралықта анықталғандығын, үзіліссіздігін, түбірінің барлығын, оның жалғыздығын дәлелдейтін аргументтерді бақылау керек. Осы этаптан өткеннен кейін ғана есепті осы теңдеуге қолдануға келетін алгоритм көмегімен шығаруға болады.

Сызықты емес теңдеулер екі түрлі:


    1. алгебралық

    2. трансцендентті.

Алгебралық теңдеулер деп алгебралық көпмүшеліктерден тұратын теңдеулерді айтады. Олардың шешімдері көбіне нақты сан болады.

Трансцендентті теңдеу деп құрамында тригонометриялық немесе арнаулы функцялары бар теңдеуді айтады.

Сызықты емес теңдеуді сандық шешу екі тәсілден ([1] қараңыз) тұрады.

1. Тура тәсіл - есепті математикалық дәлелденген бір формулаға қою арқылы тікелей шығару.

2. Итерациялық тәсіл – есепті формула көмегімен бастапқы жуықтауды беру арқылы жуықтап, біртіндеп шығару.

Тура тәсілмен шығарылған есептер дәл мәнді береді. Ал итерациялық тәсілмен шешілген есептер есептің жуық мәнін береді .Мұның ішінде итерациялық әдістер сандық әдіске жатады.

Бір өлшемді сызықты емес теңдеуді шешудің келесі әдістері бар.

1.Кесіндіні қақ бөлу - дихотомия әдісі деп аталады.

2.Хорда әдісі.

3. Жанама әдісі немесе Ньютон әдісі

4. Қарапайым итерациялық әдіс немесе жәй итерация әдісі т.б.

Түбір жатқан аралықты анықтау әдісі

F(x)=0 (1.1)

Бірөлшемді сызықты емес теңдеу берілген. Мұндағы F(x) функциясы [a,b] кесіндісінде анықталған және үзіліссіз болсын.
Теорема1.1: [а,в] аралығында анықталған, үзіліссіз F(x) функциясының екі шеткі нүктелердегі мәндерінің таңбалары әр түрлі болса, яғни мына шарт орындалса f(a)*f(b)<0, онда осы аралықта (1.1)-теңдеудің түбірі бар және жалғыз болады.

Практикада кейде теореманың орындалуын функцияның мәндер кестесін құру арқылы да анықтайды. Функцияның анықталу облысы бойынша а нүктесін беріп, ол нүктедегі функция мәнін анықтайды, сосын һ қадаммен келесі нүктеге жылжып, сол нүктедегі функция мәнін анықтайды, сол сияқты бірнеше нүктедегі функция мәндерін анықтап, таңбасын салыстырады. Егер көрші нүктелерде функция әр түрлі таңба қабылдаса, сол аралықта жалғыз түбірі жатыр деп айтады.


10-шы дәріс: Кесіндіні қақ бөлу әдісі. Жай итерация әдісі

Дәріс жоспары:



  1. Теңдеуді кесіндіні қақ бөлу әдісімен шешу алгаритмі .

  2. Жай итерация әдісі

Итерациялық тізбектің жинақтылығы теоремасы

Кесіндіні қақ бөлу әдісі

(1.1) - теңдеуді кесіндіні қақ бөлу әдісімен шешу алгаритмі келесі қадамнан тұрады.


  1. (1.1)-ші теңдеудің түбірі жатқан аралығын анықтау және осы аралықта түбірдің жалғыздығын тексеру. Яғни x осі бойында бірдей қашықтықта жатқан нүктелердегі функцияның мәндерін есептеміз, және егер екі шеткі нүктеде немесе екі көрші нүктеде функция мәндерінің таңбалары әр түрлі болса, онда сол аралықта түбір бар деп есептеу

  2. Осы аралықты қаққа бөлу және ол нүктенің мәнін

Xорт=(Xn+1+Xn)\2. (1.2)

формуласымен анықтау.



  1. Xn+1-Xn

  2. XОРТ нүктесіндегі функция мәнін F(XОРТ) есептеу.

  3. Егер оның таңбасы F(Xn) функциясының таңбасымен бірдей болса, Xn нүктесінің орнына XОРТ нүктесін қарастырамыз.

  4. Ал егер F(XОРТ) функциясының таңбасы F(Xn+1) функциясының таңбасымен бірдей болса, Xn+1 нүктесінің орнына ХОРТ нүктесін қарастырамыз.

  5. Шыққан аралықтар [Xn,, Хорт] U [Xорт, Xn+1] белгіленеді.және алдыңғы шарттарға байланысты екі аралықтың біреуін тағы қаққа бөлу арқылы ізделінді нүктеге біртіндеп жақындаймыз. Яғни мына шарттар тексеріледі: F(Xn+1)*F(Xорт)<0 шарты орындалса [Xорт,Xn+1] аралығы қаққа бөлінеді де шыққан нүкте мәні, XОРТ2=XОРТ+ X n+1/2 формуласымен есептеледі. F(Xn)*F(ХОРТ)<0 шарты орындалса [Xn, Xорт] аралығы қаққа бөлініп, табылған нүкте XОРТ2=XОРТ+ X n/2 формуласымен есептеледі.

  6. Осы процесті іздеп отырған х нүктесіне жеткенге дейін жалғастырып, XОРТ, XОРТ2, XОРТ3, …, XОРТN тізбегін құрамыз. Мына шарт орындалатын уақытта XОРТN - XОРТN-1 ОРТN нүктесін (1.1)-ші теңдеуді қанағаттандыратын х дәл түбірге жуық мән деп қабылдаймыз.

Жай итерация әдісі

Бұл әдісті қолдану үшін (1.1)-ші теңдеудің сызықты мүшесі айшықталып мына түрге келтіру керек:



(1.3)

Сосын теңдеудің түбіріне кез келген Х0 бастапқы жуықтау беріп k=1,2,… формуласымен х1, х2,…,хn нүктелер тізбегін құрамыз. Бұл тізбек x=z түбіріне жинақталуы керек. Егер limXk=z болса, онда z нүктесі теңдеуінің түбірі бола алады. Итерация әдісінің жинақтылық шарты және бастапқы жуықтау кез келген болады. Итерациялық процесс берілген дәлдікке жетуі үшін шарты орындалуы керек.

Итерациялық тізбектің жинақтылығы теореманың ([1] қараңыз) шарттарымен де тексерілуі керек:



Достарыңызбен бөлісу:
1   ...   64   65   66   67   68   69   70   71   ...   144




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет