При выпаривании обычно осуществляется частичное удаление растворителя из всего объема раствора при его температуре кипения


Расчёт размеров барометрической трубы



бет8/8
Дата24.12.2021
өлшемі0,92 Mb.
#104820
1   2   3   4   5   6   7   8
Байланысты:
Расчет вакуумно-выпарной установки

4.4 Расчёт размеров барометрической трубы
Диаметр барометрической трубы рассчитывается по уравнению расхода (26) при скорости воды 1 м/с, и расходе жидкости W2+z:

м
Расчетный диаметр округляем до dТР=500 мм.

Высота трубы складывается из высоты водяного столба Нвак, соответствующей разрежению в конденсаторе и необходимого для уравновешивания атмосферного давления; высоты Нгидр, отвечающей напору, затрачиваемому на преодоление гидравлического сопротивления в трубе и созданию скоростного напора w2/2g воды в барометрической трубе.


Таблица 6 - Результаты расчёта тарелок барометрического конденсатора

Nтарелки

Количество стекающей воды z, кг/с

Высота слоя воды на тарелке, м

w0, м/с

w, м/с

delta, м

dэкв, м

log

t, oC

Q, кДж/с

1

152,1

0,243

0,925

2,095

0,107

0,185

0,068

26,10

927,81

2

152,4

0,244

0,925

2,095

0,107

0,185

0,068

27,67

906,42

3

152,7

0,245

0,925

2,095

0,107

0,185

0,068

29,24

885,03

4

153,1

0,245

0,926

2,096

0,108

0,186

0,067

30,81

863,64

5

153,4

0,245

0,926

2,096

0,108

0,186

0,067

32,37

842,24

6

153,7

0,246

0,926

2,096

0,108

0,186

0,067

33,93

820,87

7

154,0

0,246

0,927

2,096

0,108

0,186

0,067

35,55

799,48

8

154,4

0,246

0,927

2,096

0,109

0,187

0,066

37,11

778,09

9

154,7

0,247

0,928

2,097

0,109

0,187

0,066

38,62

756,69

10

155,1

0,247

0,928

2,097

0,109

0,187

0,066

40,23

735,30

11

155,6

0,247

0,928

2,097

0,110

0,187

0,066

41,80

713,92

12

156,0

0,248

0,928

2,097

0,110

0,187

0,065

43,37

692,53

13

156,3

0,248

0,929

2,097

0,110

0,187

0,065

44,93

671,14

14

156,7

0,248

0,929

2,097

0,111

0,187

0,065

46,51

649,75

15

157,2

0,248

0,929

2,097

0,111

0,187

0,065

48,08

628,35

16

157,6

0,249

0,929

2,097

0,112

0,188

0,065

49,65

606,97

17

158,0

0,249

0,929

2,097

0,112

0,188

0,064

51,22

585,57

18

158,4

0,249

0,930

2,097

0,112

0,188

0,064

52,79

564,19

19

158,8

0,250

0,930

2,097

0,112

0,188

0,064

54,36

542,80

20

159,2

0,250

0,930

2,097

0,113

0,189

0,064

55,91

521,42

21

159,6

0,250

0,931

2,097

0,113

0,189

0,064

57,50

500,03

22

160,1

0,251

0,931

2,097

0,113

0,189

0,064

59,07

478,64

23

160,6

0,251

0,932

2,097

0,113

0,189

0,064

60,68

457,25

24

160,9

0,252

0,932

2,097

0,114

0,190

0,064

62,41

435,86

Кроме того, высоту трубы обычно принимают с запасом, равным 0,5 – 1 м, чтобы обеспечить бесперебойную подачу паров в конденсатор при увеличении атмосферного давления. Таким образом


м. (37)

м, (38)
где В – разрежение в конденсаторе, мм. рт. ст.

Потерю напора определяют, задаваясь предварительно высотой трубы НТР. Тогда


, м, (40)
где - коэффициент трения, определяемый в зависимости от критерия Рейнольдса [8, с. 22]:

При шероховатости трубы е=0,2 мм
.

Задаём НТР=10 м


м.

м
После второго приближения
м, то есть отличается незначительно.
Принимаем НТР = 9 м.
4.5 Расчёт количества отсасываемого воздуха и мощности, потребляемой вакуум-насосом
Эмпирическая формула для расчёта количества отсасываемого из конденсатора воздуха [3]:
кг/с. (41)
Температура отсасываемого воздуха
оС. (42)
Объём отсасываемого воздуха
м3/с, (43)

а ,

где ра и рп – парциальные давления пара и воздуха в конденсаторе, кг/м2.

Парциальное давление пара определяется по паровым таблицам при температуре tвозд.


кгс/см2 = 44,14 кг/м2.

кгс/см2 = 755,37 кг/м2.

кг/м2.

м3/с.
Мощность поршневого вакуум-насоса может быть рассчитана по формуле [5]:

где - к. п. д. вакуум-насоса;

m = 1,25 – показатель политропы.



5 Расчёт мощности циркуляционных насосов

Мощность привода циркуляционного насоса может быть рассчитана по следующему уравнению [5]:


, кВт,
где G – количество раствора, циркулирующего в контуре выпарного аппарата, кг/ч;

Н – напор, развиваемый насосом, кг/м2;



- плотность раствора, кг/м3;

- к. п. д. насоса.

Количество раствора, проходящего через поперечное сечение контура, определяется из соотношения


, кг/ч,
где dвн – внутренний диаметр греющих труб, м

n – число трубок;

w = 2,5 м/с – скорость циркуляции раствора.

Принимаем Н = 5000 кг/м2

Для первого корпуса
кг/с.

кВт.

Для второго корпуса


кг/с.

кВт.
Заключение

В курсовом проекте рассчитана двухкорпусная прямоточная вакуум-выпарная установка с выносной зоной нагрева и принудительной циркуляцией для выпаривания 42 м3/ч дрожжевой суспензии от 12,4 до 21% АСВ.


Рассчитаны материальный и тепловой балансы корпусов по методу Тищенко, подобраны стандартные установки – по две ВВУ-126-2860-06 на каждую ступень выпаривания. Произведен конструктивный расчет корпусов: определено необходимое количество кипятильных труб, диаметр греющей камеры, размеры сепарационного пространства, рассчитаны диаметры штуцеров и трубопроводов. Также произведен расчет барометрического конденсатора и мощности циркуляционных насосов для данной установки.
Список использованных источников


  1. Выпарные трубчатые стальные аппараты общего назначения. Каталог. – М: ЦИНТИХИМНЕФТЕМАШ, 1979. – 24 с.

  2. Гельперин Н. И. Основные процессы и аппараты химической технологии. – М: Химия, 1981. – 812 с.

  3. Касаткин А. Г. Основные процессы и аппараты химической технологии. – Изд. 9-е испр. – М.; Химяи, 1973. – 750 с.

  4. Кичигин М. А., Костенко Г. Н. Теплообменные аппараты и выпарные установки. М. – Л.: Госэнергоиздат, 1955. – 392 с.

  5. Колач Т. А., Радун Д. В. Выпарные станции. – М.: Машгиз, 1963. – 400 с.

  6. Михеев М. А., Михеев И. М. Основы теплопередачи. – М.: Энергия, 1977. – 342 с.

  7. Новаковская С. С. Справочник технолога дрожжевого производства. – М.: Пищевая промышленность, 1973.

  8. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Изд. 9-е перераб. и доп. – Л.:Химия, 1981. – 560 с.

  9. Плановский А. Н., Рамм В. М., Каган С. Э. Процессы и аппараты химической технологии. – М.: Госхимиздат, 1962.

  10. Таубман Е. И. Расчёт и моделирование выпарных установок. – М.: Химия, 1970. – 215 с.

  11. Чернобыльский И. И. и др. Машины и аппараты химических производств. Изд. 3-е перераб. и доп.– М.: Машиностроение,1975– 454 с.


ПРИЛОЖЕНИЕ А
Предварительный расчёт вакуум-выпарной установки на ЭВМ

Программа на языке Turbo Pascal


PROGRAM TEPRAS;

TYPE MATR=ARRAY[1..5,1..54] OF REAL;

MATRIX=ARRAY[1..6,1..19] OF REAL;

CONST


A:MATR=((0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,150,160,170,180,190,200,210,220,230,240,250,260,270,280,290,300,310,320,330,340,350,360,370,374),(0.0062,0.0089,0.0125,0.0174,0.0238,0.0323,0.0433,0.0573,0.0752,0.0977,0.1258,0.1605,0.2031,0.2550,0.3177,0.393,0.483,0.590,0.715,0.862,1.033,1.232,1.461,1.724,2.025,2.367,2.755,3.192,3.685,4.238,4.855,6.303,8.080,10.23,12.80,15.85,19.55,23.66,28.53,34.13,40.55,47.85,56.11,65.42,75.88,87.6,100.7,115.2,131.3,149.0,168.6,190.3,214.5,225),(0,20.95,41.90,62.85,83.80,104.75,125.70,146.65,167.60,188.55,209.50,230.45,251.40,272.35,293.3,314.3,335.2,356.2,337.1,398.1,419.0,440.4,461.3,482.7,504.1,525.4,546.8,568.2,589.5,611.3,632.7,654.1,719.8,763.8,808.3,852.7,8979,943.2,989.3,1035,1082,1130,1178,1226,1275,1327,1380,1437,1498,1564,1638,1730,1890,2100),(2493.1,2502.7,2512.3,2522.4,2532.0,2541.7,2551.3,2561.0,2570.6,2579.8,2589.5,2598.7,2608.3,2617.5,2626.3,2636,2644,2653,2662,2671,2679,2687,2696,2704,2711,2718,2726,2733,2740,2747,2753,2765,2776,2785,2792,2798,2801,2803,2802,2799,2783,2770,2754,2764,2710,2682,2650,2613,2571,2519,2444,2304,2100,2100),(2493.1,2481.7,2470.4,2459.5,2448.2,2436.9,2425.6,2414.3,2403.0,2391.3,2380.0,2368.2,2356.9,2345.2,2333.0,2321,2310,2297,2285,2273,2260,2248,2234,2221,2207,2194,2179,2165,2150,2125,2120,2089,2056,2021,1984,1945,1904,1860,1813,1763,1710,1653,1593,1528,1459,1384,1302,1213,1117,1009,881.2,713.6,411.5,0));

TVP1=87;DTGS1=1;DTGS2=1;G=9.81;H=5.95;M=100000;DELTA1=0.95;

DELTA2=0.95;A1=0.95;

VAR W,W1,W2,D1,D2,X1,X2,T1,T2,TVP2,RO,RO1,RO2,PK,P1,P2,PSR1,PSR2,DTGEF1,DTGEF2,DTPOT,TKIP1,TKIP2,P,TGP,DTPOL2,DTPOL1,V,I1,I2,D1T,D2T,W1T,W2T,WT,BETA1,BETA2,CN,CK,B1,B2,W1K,W2K,D1K,D2K,WK,A2,GN,EN,PN,PV,RO0,SDTPOL1,SDTPOL2,LAMBDA1,TAU1,TAU2,C1,C2,C3,QPOT1,QPOT2,QPOT3,GK,TN,XN,XK:REAL;

J,F:INTEGER;
BEGIN

WRITELN('ИСХОДНЫЕ ДАННЫЕ:');

WRITE('РАСХОД ДРОЖЖЕВОЙ СУСПЕНЗИИ, ПОСТУПАЮЩЕЙ НА ВЫПАРКУ GN, М3/Ч=');

READLN(GN);

WRITE('НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ ДРОЖЖЕВОЙ СУСПЕНЗИИ XN, % МАСС=');

READLN(XN);

WRITE('КОНЕЧНАЯ КОНЦЕНТРАЦИЯ ДРОЖЖЕВОЙ СУСПЕНЗИИ XК, % МАСС=');

READLN(XK);

WRITE('ТЕМПЕРАТУРА ДРОЖЖЕВОЙ СУСПЕНЗИИ ТН, ГРАД=');

READLN(TN);

WRITE('КОЛИЧЕСТВО ОТВОДИМОГО ЭКСТРАПАРА ЕН, Т/Ч=');

READLN(EN);

WRITE('ДАВЛЕНИЕ ГРЕЮЩЕГО ПАРА РН, АТМ=');

READLN(PN);

WRITE('ДАВЛЕНИЕ В БАРОМКОНДЕНСАТОРЕ РВ, АТМ=');

READLN(PV);

WRITELN('ВВЕДИТЕ ПЛОТНОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ=',TN:6:2);

WRITE('И КОНЦЕНТРАЦИИ АСВ=',XN:6:2);

WRITE(' RO=');

READLN(RO);

GN:=GN*RO/3600;

EN:=EN*1000/3600;

W:=GN*(1-XN/XK);

D1:=0.5*(W+EN);

W1:=D1;

D2:=D1-EN;

W2:=D2;

X1:=GN*XN/(GN-W1);

X2:=XK;

T1:=TVP1+DTGS1;

WRITELN('ТЕМПЕРАТУРА КИПЕНИЯ СУСПЕНЗИИ В ПЕРВОМ СЕПАРАТОРЕ, ГРАД=',T1:6:3);

PK:=1-PV;

V:=PK;

FOR J:=1 TO 54 DO



IF A[2,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

TVP2:=A[1,F]-((A[1,F]-A[1,F-1])*(A[2,F]-PK)/(A[2,F]-A[2,F-1]));

T2:=TVP2+DTGS2;

WRITELN('ТЕМПЕРАТУРА КИПЕНИЯ ВО ВТОРОМ СЕПАРАТОРЕ, ГРАД=',T2:6:3);

V:=T1;

FOR J:=1 TO 54 DO



IF A[1,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

P1:=A[2,F]-((A[2,F]-A[2,F-1])*(A[1,F]-T1)/(A[1,F]-A[1,F-1]));

V:=T2;

FOR J:=1 TO 54 DO



IF A[1,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

P2:=A[2,F]-((A[2,F]-A[2,F-1])*(A[1,F]-T2)/(A[1,F]-A[1,F-1]));

WRITELN('ВВЕДИТЕ ПЛОТНОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ=',T1:6:2);

WRITE('И КОНЦЕНТРАЦИИ АСВ=',X1:6:2);

WRITE(' RO1=');

READLN(RO1);

PSR1:=P1+(RO1*G*H)/196200;

WRITELN('ВВЕДИТЕ ПЛОТНОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ=',T2:6:2);

WRITE('И КОНЦЕНТРАЦИИ АСВ=',X2:6:2);

WRITE(' RO2=');

READLN(RO2);

PSR2:=P2+(RO2*G*H)/196200;

V:=PSR1;

FOR J:=1 TO 54 DO

IF A[2,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

TKIP1:=A[1,F]-((A[1,F]-A[1,F-1])*(A[2,F]-PSR1)/(A[2,F]-A[2,F-1]));

V:=PSR2;

FOR J:=1 TO 54 DO

IF A[2,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

TKIP2:=A[1,F]-((A[1,F]-A[1,F-1])*(A[2,F]-PSR2)/(A[2,F]-A[2,F-1]));

DTGEF1:=TKIP1-T1;

DTGEF2:=TKIP2-T2;

DTPOT:=DTGS1+DTGS2+DTGEF1+DTGEF2;

P:=PN;


V:=PN;

FOR J:=1 TO 54 DO

IF A[2,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

TGP:=A[1,F]-((A[1,F]-A[1,F-1])*(A[2,F]-PN)/(A[2,F]-A[2,F-1]));

DTPOL1:=TGP-TKIP1;

DTPOL2:=TVP1-TKIP1;

SDTPOL1:=DTPOL1+DTPOL2;

SDTPOL2:=TGP-TVP2-DTPOT;

WRITELN('РЕЗУЛЬТАТЫ ПРЕДВАРИТЕЛЬНОГ РАСЧЕТА');

WRITELN('ОБЩЕЕ КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ W, КГ/С=',W:6:3);

WRITELN('КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ В ПЕРВОМ КОРПУСЕ W1, КГ/С',W1:6:3);

WRITELN('КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ ВО ВТОРОМ КОРПУСЕ W2, КГ/С',W2:6:3);

WRITELN('КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА В ПЕРВОМ КОРПУСЕ D1, КГ/С',D1:6:3);

WRITELN('КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА ВО ВТОРОМ КОРПУСЕ D2, КГ/С',D2:6:3);

WRITELN('СРЕДНЯЯ ТЕМПЕРАТУРА КИПЕНИЯ СУСПЕНЗИИ В ПЕРВОМ КОРПУСЕ ТКИП1, ГРАД=',TKIP1:6:3);

WRITELN('СРЕДНЯЯ ТЕМПЕРАТУРА КИПЕНИЯ СУСПЕНЗИИ ВО ВТОРОМ КОРПУСЕ ТКИП2, ГРАД=',TKIP2:6:3);

WRITELN('ПОЛЕЗНАЯ РАЗНОСТЬ ТЕМПЕРАТУР В ПЕРВОМ КОРПУСЕ ТПОЛ1, ГРАД=',DTPOL1:6:3);

WRITELN('ПОЛЕЗНАЯ РАЗНОСТЬ ТЕМПЕРАТУР В ПЕРВОМ КОРПУСЕ ТПОЛ2, ГРАД=',DTPOL2:6:3);

WRITE('СУММАРНАЯ ПОЛЕЗНАЯ РАЗНОСТЬ ТЕМПЕРАТУР, ГРАД=',SDTPOL1:6:3);

WRITELN('ИЛИ',SDTPOL2:6:3);

{МЕТОД ТИЩЕНКО}

V:=TKIP1;

FOR J:=1 TO 54 DO

IF A[1,J]>=V THEN

BEGIN

V:=M;


F:=J;

END;


I1:=A[4,F]-((A[4,F]-A[4,F-1])*(A[1,F]-TKIP1)/(A[1,F]-A[1,F-1]))/4.19;

V:=TKIP2;

FOR J:=1 TO 54 DO

IF A[1,J]>=V THEN

BEGIN

V:=M;


F:=J;

END;


I2:=A[4,F]-((A[4,F]-A[4,F-1])*(A[1,F]-TKIP2)/(A[1,F]-A[1,F-1]))/4.19;

BETA1:=(TN-TKIP1)/(I1-TKIP1);

BETA2:=(TKIP1-TKIP2)/(I2-TKIP2);

WRITELN('ВВЕДИТЕ ТЕПЛОЕМКОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ=',TN:6:2);

WRITE('И КОНЦЕНТРАЦИИ АСВ=',XN:6:2);

WRITE(' CN=');

READLN(CN);

D1T:=(W-GN*CN*(2*BETA1+BETA2)+EN)/(2-BETA2);

W1T:=D1T+GN*CN*BETA1;

D2T:=W1T-EN;

W2T:=D2T+(GN*CN-W1T)*BETA2;

WT:=W1T+W2T;

WRITELN('РЕЗУЛЬТАТЫ РАСЧЕТА ПО МЕТОДУ ТИЩЕНКО');

WRITELN('ОБЩЕЕ КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ W, КГ/С=',WT:6:3);

WRITELN('КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ В ПЕРВОМ КОРПУСЕ W1, КГ/С',W1T:6:3);

WRITELN('КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ ВО ВТОРОМ КОРПУСЕ W2, КГ/С',W2T:6:3);

WRITELN('КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА В ПЕРВОМ КОРПУСЕ D1, КГ/С',D1T:6:3);

WRITELN('КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА ВО ВТОРОМ КОРПУСЕ D2, КГ/С',D2T:6:3);

{МЕТОД КОСТЕНКО}

B1:=GN*CN*BETA1*DELTA1;

B2:=GN*CN*(BETA1*DELTA1*DELTA2+BETA2*DELTA2-DELTA1*DELTA2*BETA1*BETA2)-EN*DELTA2;

A2:=(A1-A1*BETA2)*DELTA2;

D1K:=(W-(B1+B2))/(A1+A2);

W1K:=D1K*A1+B1;

D2K:=W1K-EN;

W2K:=D1K*A2+B2;

WK:=D1K*(A1+A2)+(B1+B2);

WRITELN('РЕЗУЛЬТАТЫ РАСЧЕТА ПО МЕТОДУ КОСТЕНКО');

WRITELN('ОБЩЕЕ КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ W, КГ/С=',WK:6:3);

WRITELN('КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ В ПЕРВОМ КОРПУСЕ W1, КГ/С',W1K:6:3);

WRITELN('КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ ВО ВТОРОМ КОРПУСЕ W2, КГ/С',W2K:6:3);

WRITELN('КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА В ПЕРВОМ КОРПУСЕ D1, КГ/С',D1K:6:3);

WRITELN('КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА ВО ВТОРОМ КОРПУСЕ D2, КГ/С',D2K:6:3);

{ТЕПЛОВОЙ БАЛАНС}

V:=TGP;

FOR J:=1 TO 54 DO

IF A[1,J]>=V THEN

BEGIN


V:=M;

F:=J;


END;

LAMBDA1:=A[4,F]-((A[4,F]-A[4,F-1])*(A[1,F]-TGP)/(A[1,F]-A[1,F-1]))/4.19;

TAU1:=A[3,F]-((A[3,F]-A[3,F-1])*(A[1,F]-TGP)/(A[1,F]-A[1,F-1]))/4.19;

V:=TKIP1;

FOR J:=1 TO 54 DO

IF A[1,J]>=V THEN

BEGIN

V:=M;


F:=J;

END;


TAU2:=A[3,F]-((A[3,F]-A[3,F-1])*(A[1,F]-TKIP1)/(A[1,F]-A[1,F-1]))/4.19;

C1:=GN*CN*TN;

C2:=EN*I1;

WRITELN('ВВЕДИТЕ ТЕПЛОЕМКОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ=',T2:6:2);

WRITE('И КОНЦЕНТРАЦИИ АСВ=',XK:6:2);

WRITE(' CK=');

READLN(CK);

GK:=GN-W;

C3:=GK*CK*T2;

QPOT1:=((D1*LAMBDA1+C1)-(C2+W2*I2+D1*TAU1+D2*TAU2+C3))*100/(D1*LAMBDA1+C1);

QPOT2:=((D1T*LAMBDA1+C1)-(C2+W2*I2+D1T*TAU1+D2*TAU2+C3))*100/(D1T*LAMBDA1+C1);

QPOT3:=((D1K*LAMBDA1+C1)-(C2+W2*I2+D1K*TAU1+D2*TAU2+C3))*100/(D1K*LAMBDA1+C1);

WRITELN('ТЕМПЕРАТУРА ГРЕЮЩЕГО ПАРА TGP=',TGP:8:3);

WRITELN('ДАВЛЕНИЕ P1=',P1:6:3);

WRITELN('ДАВЛЕНИЕ P2=',P2:6:3);

WRITELN('ТЕМПЕРАТУРА TVP2=',TVP2:8:3);

WRITELN('ТЕПЛОВЫЕ ПОТЕРИ');

WRITELN('ПО ПРЕДВАРИТЕЛЬНОМУ РАСЧЕТУ QPOT=',QPOT1:6:3);

WRITELN('ПО МЕТОДУ ТИЩЕНКО QPOT=',QPOT2:6:3);

WRITELN('ПО МЕТОДУ КОСТЕНКО QPOT=',QPOT3:6:3);

READLN;

END.
Результаты работы программы


ИСХОДНЫЕ ДАННЫЕ:

РАСХОД ДРОЖЖЕВОЙ СУСПЕНЗИИ, ПОСТУПАЮЩЕЙ НА ВЫПАРКУ GN, М3/Ч=42

НАЧАЛЬНАЯ КОНЦЕНТРАЦИЯ ДРОЖЖЕВОЙ СУСПЕНЗИИ XN, % МАСС=12.4

КОНЕЧНАЯ КОНЦЕНТРАЦИЯ ДРОЖЖЕВОЙ СУСПЕНЗИИ XК, % МАСС=21

ТЕМПЕРАТУРА ДРОЖЖЕВОЙ СУСПЕНЗИИ ТН, ГРАД=90

КОЛИЧЕСТВО ОТВОДИМОГО ЭКСТРАПАРА ЕН, Т/Ч=1.32

ДАВЛЕНИЕ ГРЕЮЩЕГО ПАРА РН, АТМ=1.47

ДАВЛЕНИЕ В БАРОМКОНДЕНСАТОРЕ РВ, АТМ=0.77

ВВЕДИТЕ ПЛОТНОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ= 90.00

И КОНЦЕНТРАЦИИ АСВ= 12.40 RO=1008

ТЕМПЕРАТУРА КИПЕНИЯ СУСПЕНЗИИ В ПЕРВОМ СЕПАРАТОРЕ, ГРАД=90.500

ТЕМПЕРАТУРА КИПЕНИЯ ВО ВТОРОМ СЕПАРАТОРЕ, ГРАД=62.000

ВВЕДИТЕ ПЛОТНОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ= 90.50

И КОНЦЕНТРАЦИИ АСВ= 15.80 RO1=1025

ВВЕДИТЕ ПЛОТНОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ= 62.00

И КОНЦЕНТРАЦИИ АСВ= 21.00 RO2=1040

РЕЗУЛЬТАТЫ ПРЕДВАРИТЕЛЬНОГ РАСЧЕТА

ОБЩЕЕ КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ W, КГ/С= 4.827

КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ В ПЕРВОМ КОРПУСЕ W1, КГ/С 2.354

КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ ВО ВТОРОМ КОРПУСЕ W2, КГ/С 2.479

КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА В ПЕРВОМ КОРПУСЕ D1, КГ/С 2.060

КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА ВО ВТОРОМ КОРПУСЕ D2, КГ/С 2.232

СРЕДНЯЯ ТЕМПЕРАТУРА КИПЕНИЯ СУСПЕНЗИИ В ПЕРВОМ КОРПУСЕ ТКИП1, ГРАД=106.369

СРЕДНЯЯ ТЕМПЕРАТУРА КИПЕНИЯ СУСПЕНЗИИ ВО ВТОРОМ КОРПУСЕ ТКИП2, ГРАД=102.415

ПОЛЕЗНАЯ РАЗНОСТЬ ТЕМПЕРАТУР В ПЕРВОМ КОРПУСЕ ТПОЛ1, ГРАД=13.562

ПОЛЕЗНАЯ РАЗНОСТЬ ТЕМПЕРАТУР В ПЕРВОМ КОРПУСЕ ТПОЛ2, ГРАД=12.929

СУММАРНАЯ ПОЛЕЗНАЯ РАЗНОСТЬ ТЕМПЕРАТУР, ГРАД= 26.558

ВВЕДИТЕ ТЕПЛОЕМКОСТЬ ДРОЖЖЕВОЙ СУСПЕНЗИИ ПРИ ТЕМПЕРАТУРЕ= 97.00

И КОНЦЕНТРАЦИИ АСВ= 12.40 CN=3.55

РЕЗУЛЬТАТЫ РАСЧЕТА ПО МЕТОДУ ТИЩЕНКО

ОБЩЕЕ КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ W, КГ/С= 4.844

КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ В ПЕРВОМ КОРПУСЕ W1, КГ/С 2.383

КОЛИЧЕСТВО ВЫПАРИВАЕМОЙ ВОДЫ ВО ВТОРОМ КОРПУСЕ W2, КГ/С 2.463

КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА В ПЕРВОМ КОРПУСЕ D1, КГ/С 2.397

КОЛИЧЕСТВО ГРЕЮЩЕГО ПАРА ВО ВТОРОМ КОРПУСЕ D2, КГ/С 2.067

ТЕМПЕРАТУРА ГРЕЮЩЕГО ПАРА TGP= 109.541

ДАВЛЕНИЕ P1= 0.71

ДАВЛЕНИЕ P2= 0.23

ТЕМПЕРАТУРА TVP2= 64.199

ТЕПЛОВЫЕ ПОТЕРИ



ПО МЕТОДУ ТИЩЕНКО QPOT= 344,35


Обозначение

Расшифровка

А

матрица табличных данных

tvp1, tvp2

Температуры конденсации вторичных паров в 1 и 2 корпусе

Dtgs1, dtgs2

Температурные потери от гидравлических сопротивлений

Tgp

Полезные разности температур в 1 и 2 корпусе

H

Высота от верхнего уровня жидкости в сепараторе до середины греющих труб

ρ0, ρ02

Плотности суспензии при температурах Т1 и Т2

Gn

Начальный расход выпариваемого раствора

Xn, xk

Начальная и конечная концентрации суспензии

tn

Начальная температура

En

Количество отводимого экстра-пара в сепараторе

T1, t2

Температуры кипения суспензии в 1 и 2 сепараторе

Pn

Давление греющего пара



Давление в баромконденсаторе

P1,P2

Давление в 1 и 2 сепараторах

Psr1, Psr2

Давление в среднем слое выпариваемой суспензии в 1 и 2корпусе

W

Общее количество выпариваемой воды

W1, W2

Количество выпариваемой воды в1 и 2 корпусе

Tkip1, Tkip2

Средние температуры кипения в 1 и 2 корпусе

Tpol1, Tpol2

Полезные разности температур в 1 и 2 корпусе

D1, D2

Количество греющего пара в 1 и 2 корпусе

Dtgf1, Dtgf2

Температурные потери от гидростатического эффекта

Dtpot

Сумма всех температурных потерь для установки

Tgp

Температура греющего пара

a1,a2,b1,b2

Числовые коэффициенты

i1, i2

Удельная энтальпия пара

Qpot1,Qpot2, Qpot3

Тепловые потери

Beta1, Beta2

Коэффициенты самоиспарения


Cn, Ck

Теплоемкости дрожжевой суспензии

Tau1, Tau2

Удельные энтальпии жидкости

Lamda1,lamda2

Теплопроводность дрожжевой суспензии

J

Количество выбранных табличных значений

F

Номер выбранных табличных значений

G

Ускорение свободного падения

Список идентификаторов к программе





Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет