В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите расстояние между точками В и Е.
Длина большей диагонали правильного шестиугольника равна его удвоенной стороне. Поэтому
Задача №11
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 1. Найдите угол DАВ. Ответ дайте в градусах.
В правильном шестиугольнике углы
между сторонами равны120° значит,
Задача №12
В правильной шестиугольной призме ABCDEFA1B1C1D1E1F1 все ребра равны 8. Найдите угол между прямыми FA и D1E1. Ответ дайте в градусах.
Отрезки D1E1, DE и AB лежат на параллельных прямых, поэтому искомый угол между прямыми FA и E1D1 равен углу между прямыми FA и AB.
Поскольку ∟FAB между сторонами правильного шестиугольника равен 120°, смежный с ним угол между прямыми FA и AB равен 60°.
Задача №13
В правильной треугольной призме АВСА1В1С1 , все ребра которой равны 3, найдите угол между прямыми АА1 и ВС1. Ответ дайте в градусах.
Отрезки A1A и BB1 лежат на параллельных прямых, поэтому искомый угол между прямыми A1A и BC1 равен углу между прямыми BB1 и BC1.
Боковая грань CBB1C1 — квадрат, поэтому угол между его стороной и диагональю равен 45°.
Задача №14
В правильной треугольной призме ABCA1B1C1 стороны оснований равны 2, боковые рёбра равны 5. Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A1B1 и A1C1.
Противоположные стороны сечения являются соответственно средними треугольников, лежащих в основании, и прямоугольников, являющихся боковыми гранями призмы. Значит, сечение представляет собой прямоугольник со сторонами 1и 5, площадь которого равна 5.