Методы линеаризации для задач условной оптимизации Метод непосредственной линеаризации.
Метод допустимых направлений Зойтендейка.
Методы перебора применимы для отыскания экстремумов унимодальных целевых функций. Действие любого из методов поиска заключается в сужении области поиска экстремума (длины l 0):
а) до области заданной длины (e> 0), проводя минимальное число измерений значений функции (методы дихотомии, золотого сечения);
б) до наименьших возможных размеров ln при заданном числе измерений n (метод Фибоначчи).
Первая формулировка целесообразна в том случае, если с каждым измерением связаны значительные затраты средств или времени, однако на поиск отпускаются неограниченные средства, которые мы все же стремимся минимизировать; вторая – когда исследователь располагает ограниченными средствами и, зная расходы, связанные с каждым измерением, стремится получить наилучший результат.
Классические методы нахождения экстремумов функций предполагают, что целевые функции непрерывные и гладкие. Для существования точки экстремума должны выполняться необходимые и достаточные условия. Необходимыми условиями существования экстремума являются требования обращения в нуль частных производных первого порядка целевой функции по каждой из переменных. Точка, найденная из необходимых условий, называется стационарной (подозрительной на оптимальную). В качестве стационарных точек могут быть точки перегиба, седловые точки и др. Поэтому необходим учет достаточных условий нахождения экстремумов функций. Он сложен для функций многих переменных как в алгебраическом, так и в вычислительном плане. Так в случае функции двух переменных достаточным условием существования экстремума будет положительная определенность матрицы А размером 2x2 (условие Лежандра-Клебша), составленной из вторых частных производных функции. Недостатком классического метода дифференциального исчисления является и то, что он дает возможность найти экстремум только в том случае, если он лежит внутри области определения функции. Если экстремум находится на границе области определения, то этот метод становится бессильным.
Методы покоординатного спуска относятся к группе приближенных методов нелинейной оптимизации и направлены на уменьшение трудностей, связанных с отысканием экстремума функции цели со сложной аналитической структурой классическими методами дифференциального исчисления. Суть этих методов заключается в продвижении от исходной точки в области определения функции к точке оптимума итеративно; в методе Гаусса – последовательно по каждой из переменных (покоординатно); в градиентных методах – одновременно по всем переменным в направлении градиента или антиградиента.
Критерием окончания итеративных процедур является равенство нулю всех частных производных целевой функции, или квадрат суммы всех частных производных целевой функции должен быть не более заданного числа e, или разность достигнутого значения целевой функции и значения в предыдущей точке должна быть не более e и другие.