Ортасы
|
.
Математикалық индукция әдісінің көмегімен натурал сандардың бөлінгіштігіне қатысты тұжырымдарды дәлелдеуге болады. Мысалы, натурал сандар арифметикасының негізгі теоремасын дәлелдейік.
Теорема: Бірден артық кез-келген n натурал сан─ жай сан не әр түрлі жіктелуіндегі өзгешелігі көбейткіштердің тұрған орнында ғана болатын көбейтінді түрінде жазылады.
Дәлелдеу:
Біз ең алдымен жай көбейткіштерге жіктеудің бар болатынын көрсетелік. n=2, бұл жай сан. Біз айтқан тұжырым дұрыс.
k санына кез-келген n саны не жай немесе жай көбейткіштерге жіктелетін құрама сан. k санының өзі не жай сан, не жай көбейткіштерге жіктелетінін көрсетелік. Егер k жай сан болса, онда айтылған тұжырым дұрыс. Егер k- құрама сан болса, онда k=ab, мұндағы a және b сандары k- дан кем натурал сандар. Ұйғарым бойынша бұлар жай көбейткіштерге жіктеледі. Бұл a, b сандарын өздерінің жіктелулерімен алмастырсақ, k санының жай көбейткіштерге жіктелуін аламыз.
Сонымен, n=2 болғанда жай көбейткіштерге жіктелу туралы теореманың бар болатыны ақиқат, ал бұдан k санынан кем барлық натурал сан жіктеледі деген қорытындыға келеміз. Демек, бұл пікір k саны үшін де ақиқат деп аламыз. Демек, бұл пікір бірден артық кез келген натурал сан үшін ақиқат.
Енді көбейткіштерге жіктелудің біреу-ақ болатынын көрсетелік. Ол үшін бізге жай сандардың келесі қасиеті қажет болады. Егер n натурал саны р жай санына бөлінсе, онда n санының кез келген жай көбейткіштерге жіктелуінде бір көбейткіш р болады. Шынында да n саны р-ға бөлінсе және n=q1... qm, q1, q2,..., qm – жай сандар, онда жай сандардың қасиеті бойынша q1, q2,..., qm – сандардың бірі, мысалы, q1 саны р – ға бөлінуге тиіс. q1-жай сан, онда ол р -мен бірдей болуы керек. n=2 болғанда 2 жай санын аламыз, мұның басқа жай көбейткіштерге жіктелуі болмайды.
k санынан кем барлық натурал сандар бір ғана түрде жай көбейткіштерге жіктелсін. Бұл жағдайда жіктелудің біреуі ғана болатыны туралы теорема ақиқат. Егер k құрама сан болса, онда ол k – дан өзгеше ең болмағанда бір р санына бөлінеді.
Басқа сөбен айтқанда k санының кез келген жай көбейткіштерге жіктелуі k= р*q2…qm түрінде болады. Мұндағы q2…qm – көбейтіндісі санының жай көбейткіштерге жіктелуі–саны бірден артық k – дан кем натурал сан болғандықтан ұйғарым бойынша оның жай көбейткіштерге жіктелуі бір ғана түрде болады. Математикалық индукция әдісі бойынша тұжырым дәлелденді.
Келесі тұжырымды математикалық индукция әдісімен дәлелделік.
Егер n натурал сан болса, онда n²- n саны жұп. Дәлелдеу. n=1 болса, онда тұжырым ақиқат. Өйткені 1²-1=0 – жұп сан. Енді k²- k жұп сан болса. Сондай-ақ (k+1)²-( k+1)= 2k – жұп сан, ендеше (k+1)2-(k+1) жұп сан. Сонымен, n²- n айырмасының жұптылығы n=1 үшін дәлелдедік, k²- k жұптылығын (k+1)2-(k+1)-жұп екені қорытылды. Демек, n²- n айырмасы n санының барлық натурал мәнінде жұп.
Дәл осы сияқты n³ -n айырмасы 3-ке бөлінеді. Ол үшін ((k+1)³- (k+1))- (k³-k) = 3k³+3k санының 3-ке бөлінетінін пайдаланамыз.
Қарастырған мысалдардан nm- n айырмасы әрқашан m-ге бөлінеді деп тұжырым жасаймыз. Мысалы m=4, n=3 болғанда. 34-3=78 саны 4-ке бөлінеді. Егер m=5 болса nm- n айырмасы 5-ке бөлінеді. Сонымен, біз қарастырған мысалдарда 2,3,5 жай сандар, сондықтан жоғарыдағы гипотезаны дәлірек тұжырымдайық.
Егер р жай сан болса, ал n кез келген бүтін сан болса онда np- n өрнегі р-ға бөлінеді, мұндағы р-жай сан. Бұл тұжырым Ферманың кіші теоремасы деп аталады. n саны р-ге бөлінетін болса, теореманың дұрыстығы бірден көрініп тұр.
np-n=n(np-1-1)
Tеңдіктің оң жағындағы n саны р-ге бөлінетіндіктен көбейтінді р-ге бөлінеді.
Тапсырма №1
1- есеп. Тақ натурал сандар үшін 1+3+5+...+ (2n-1) = n² болатындығын дәлелдеу керек
n = 1 болса S(1) = 1²
n = k үшін формула S(n) = n² орынды деп ұйғарып, n = k+1 үшін орынды болатындығын S(k+1) = (k+1)² дәлелдейік.
S(k+1) = 1+3+5+...+ (2k-1) + (2k+1) = S(k) + (2k+1) = k²+2k+1 = (k+1)² яғни S(k+1) = (k+1)² орынды екендігі дәлелденді. Сондықтан барлық натурал n сандар үшін орынды.
2- есеп. Натурал сандардың алғашқы n мүшелерінің квадраттарының қосындысы үшін 1²+2²+3²+4² +...+ n² = теңдігінің орындалатындығын дәлелдеу керек.
S(1)= 1=1²=1 n=1 үшін орынды.
n=k үшін орынды деп ұйғарамызда,
n=k+1 үшін дәлелдейік.
S(k+1) = 1² +2² +3² + 4² +...+k² +(k+1)² = S(k) + (k+1)² = +(k+1)² = == = мұнан біз n=k+1 үшін формула орынды екендігін дәлелдедік, ендеше кез – келген
натурал n үшін формула орынды.
|