Сабақ тақырыбы: Алғашқы функция және интеграл


ІІІ. Сұрақтарға жауап беру



бет3/10
Дата08.09.2017
өлшемі1,07 Mb.
#30614
түріСабақ
1   2   3   4   5   6   7   8   9   10
ІІІ. Сұрақтарға жауап беру: (ақпараттық құзырлығын қалыптастыру)

  1. Алғашқы функция ұғымы. (4 ұпай)

Анықтама: Егер берілген аралықта F′(х) = (х) теңдігі орындалатын болса, онда осы аралықта F(х) функциясын (х) функциясы үшін алғашқы функция деп атайды.

1- мысал: (х) =3х2, хR функциясы үшін алғашқы функция F(x)=x3 болады, себебі F' (x)= 3х2 = (х) әрбір хR функциясы үшін.

2- мысал: F (x)= х3 / 3 функциясы F (x)= х2 функция үшін (- ; ) интервалында алғашқы функция болады , өйткені барлық х (- ; ) үшін

F' (x)= ( х3 / 3 )' = 1 / 3 (х3) ' =1 / 3 ∙ 3х2 = x2 = (х).

2. Алғашқы функцияның негізгі қасиеті (4 ұпай)



Белгілі бір I аралықта (х) функциясы үшін алғашқы функциялардың кез-келгенін мына түрде жазып көрсетуге болады,

F (x) + С (1)

мұндағы С - кез-келген тұрақты шама, ал F(x)+С I аралығында (х) функциясы үшін алғашқы функция болып табылады.

егер у = x2, онда у' = 2x

егер у = x2 +84, онда у'=2x

егер у = x2-15, онда у'=2x

3. Алғашқы функцияны табудың үш ережесі (5 ұпай)



Бұл ережелер дифференциалдаудың сәйкес ережелеріне ұқсас.

1 – ереже. Егер үшін алғашқы функция F, ал g үшін алғашқы функция G болса ,

+ g үшін алғашқы функция F + G болады .



Шынында да, F = және G = g болатындықтан, қосындының туындысын есептеу ережесі бойынша:

(F + G) = F + G = + g

2 – ереже. Егер үшін алғашқы функция F, ал k – тұрақты шама болса , онда k үшін алғашқы функция k F болады .

Шынында да, тұрақты көбейткішті туынды таңбасының алдына шығаруға болады, сондықтан

(kF) = kF = k
3 – ереже. Егер F(x) функциясы (x) үшін алғашқы функция, ал k мен b – тұрақты шамалар болып , k 0 болса , онда (kx + b) функциясы үшін алғашқы функция

1

── F (kx + b) болады.



k

Шынында да, күрделі функцияның туындысын есептеу ережесі бойынша

1 1

── (F (kx + b)) = ── F (kx + b)(kx+b) = (kx + b)



k k

4. Функцияның тұрақтылық белгісі (3 ұпай)



Функцияның тұрақтылық белгісі . Егер қандай да бір I аралықта

F' (x)=0 болса, онда F функциясы осы аралықта тұрақты шама болады.

5. Анықталмаған интеграл дегеніміз не? (4 ұпай)



Анықтама : Берілген аралықтағы ¦(х) функциясының алғашқы функциясы осы аралықтағы ¦(х) функциясының анықталмаған интегралы деп аталады.

Белгіленуі: ¦(х) dx ( икстен эф де икс функциясының анықталмаған интегралы деп оқылады)

Анықтамаға сәйкес: ¦(х)dx=F(x)+C

Мұндағы: - интеграл таңбасы

¦(х) – интеграл астындағы функция

¦(х) dx – интеграл астындағы өрнек

х- интегралдау айнымалысы

C- кез-келген тұрақты шама

6. Интегралдау ережелері (4 ұпай )



Алғашқы функцияны табудың ережелерін анықталмаған интеграл белгісінің көмегі арқылы жазған ыңғайлы.

  1. [¦ (x) g (x)]dx =∫ ¦(x)dx ∫ g (x)dx

2. ∫ k∙¦ (x)dx = k∙∫ ¦ (x)∙dx, k- const

1

3. ∫ ¦ (kx+b)dx =  F (kx+b)+C, k0

k

  1. Анықталмаған интеграл қасиеттері (5 ұпай)

Анықталмаған интеграл қасиеттері:

( ∫ ¦ (x)∙dx) = ¦(x)

d ( ∫¦ (x)∙dx) = ¦(x)∙dx

 ∫ ¦ (x)∙dx = ¦ (x)+C

 ∫ d ¦ (x) = ¦ (x) + C

 ∫ k∙¦ (x)∙dx = k∙∫ ¦ (x)∙dx

 ∫ [ ¦ (x)+ g (x) - h (x)]∙dx =∫ ¦(x)∙dx +∫ g (x)∙dx - ∫ h (x)∙

8. Анықталған интеграл қасиеттері: (5 ұпай)













9. Анықталған интеграл мен алғашқы функцияның арасындағы байланыс (Ньютон-Лейбниц формуласы) ( 4 ұпай)

(1)

(1) формула Ньютон – Лейбниц формуласы деп аталады.

Бұл формула a;b кесіндісінде үзіліссіз кез-келген ¦ функциясы үшін тура.

Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет