Шымкент қаласы, Абай ауданы, №128 жалпы орта білім беретін мектеп



бет2/5
Дата24.01.2023
өлшемі240,97 Kb.
#166327
1   2   3   4   5
Байланысты:
шығ жоба

Ертедегі Диофанттың есебі.
Есеп. Екі санның квадраттарының қосындысына тең санды басқа екі санның квадраттарының қосындысына тең болатындай жаз.
Диофант теңдеулердің оң бүтін және бөлшек шешулерін табуға баса назар аударады. Шешуі теріс сан болатындай теңдеуді ол мағынасыз теңдеу деп санап, бүтіндей қарастырмайды. Тек бір оң түбір табумен қанағаттанады.
Алдыңғы есепке оралайық. Бұл проблеманы шешуі мынадай есеппен түсіндіреді: Берілген сан 13 болсын, ол 2 мен 3-тің квадраттарының қосындысына тең. Бір квадраттың қабырғасының ұзындығы х+2 болсын, ал екінші квадрат қабырғасының ұзындығы 2х-тен 3-і кем, яғни 2х-3. Сонда бірінші квадраттың ауданы (х+2)² =x² +4x+4, екіншісінікі (2х-3)² =4х² -12х+9.
Екеуінің ауданың қоссақ (х² +4х+4) + (4х² -12х+9)=5х²-8х+13. Есептің шарты бойынша бұл 13-ке тең болуы керек:
5х² -8х+13=13
5х² -8х=0
х(5х-8)=0 5x-8=0
5x=8
x=
Сонымен бірінші квадраттың қабырғасы х+2= + 2= , екіншісінікі 2х-3=2* -3= -3= .
Квадраттың аудандары: ( )² =
( )² =
Бұл сандардың қосындысы + = =13 болады, яғни есепті қанағаттандырады.

1-әдіс. Теңдеудің сол жақ бөлігін көбейткіштерге жіктеу.
х2 + 10х - 24 = 0 теңдеуді жіктейміз .
Теңдеудің сол жақ бөлігін көбейткіштерге жіктейміз:
х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).
Демек, теңдеуді былай жазуға болады:
(х + 12)(х - 2) = 0
Көбейтінді нөлге тең болғандықтан, ең болмағанда көбейткіштердің біреуі нөлге тең болуы керек. Сондықтан теңдеулердің сол жақ бөлігіндегі х = 2 және х = - 12  сандары х2 + 10х - 24 = 0 теңдеуінің түбірлері болып табылады.
2-әдіс. Толық квадратқа келтіру әдісі.
Мысал: х2 + 6х - 7 = 0=0 теңдеуін шешейік.
Сол жақ бөлігін толық квадратқа келтіреміз. Ол үшін х2 + 6х өрнегін төмендегідей жазып аламыз:
х2 + 6х = х2 + 2• х • 3.
Алынған өрнектің бірінші қосындысы х-тың квадраты, ал екінші қосындысы х пен 3-тің екі еселенгені. Толық квадрат алу үшін 32-ын қосу керек. Сонда
х2 + 2• х • 3 + 32 = (х + 3)2.
Енді теңдеудің сол жағын түрлендіреміз. Берілген теңдеуге 32 -ын қосып, алып тастаймыз. Сонда шығатыны:
х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.
Сонымен, берілген теңдеуді былайша жазуға болады:
(х + 3)2 - 16 =0, (х + 3)2 = 16.
Бұдан , х + 3 - 4 = 0, х1 = 1, немесе х + 3 = -4, х2 = -7.


Достарыңызбен бөлісу:
1   2   3   4   5




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет