3.Анализаторы. Строение, функции и гигиена органов слуха.
Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина способствует направлению звуковых колебаний воздуха в наружный слуховой проход, который заканчивается туго натянутой барабанной перепонкой отделяющей наружное ухо от среднего. В среднем ухе расположены 3 соединенные друг с другом слуховые косточки. Они связывают барабанную перепонку с эластичной перепонкой, затягивающей овальное окно внутреннего уха. Внутреннее ухо представляет собой систему полостей и извилистых каналов – костный лабиринт. В нем расположены перепончатый лабиринт, заполненный жидкостью. Функцию слуха в сложном лабиринте выполняют завитая улитка, в ней находятся слуховые рецепторы. Звуковые волны, достигая наружного уха, проходят через наружный слуховой проход и вызывают колебание барабанной перепонки. Слуховые косточки среднего уха усиливают и передают колебание барабанной перепонки в овальное окно внутреннего уха. Это вызывает колебание жидкости, которые преобразуются рецепторами в нервные импульсы, передающиеся по слуховому нерву в головной мозг. В височной области происходит окончательное различение характера звука, его силы, высоты. Гигиена: нужно удалять ушную серу из уха, избегать длительного шума, обращаться к врачу при болях в ухе.
1.Уровни организации живой материи.
Существуют следующие уровни организации живой материи:
1.Молекулярный (любая живая система состоит из макромолекул (нуклеиновые к-ты, ДНК, РНК, белки, полисахариды и т.д.) С этого уровня начинаются разнообразны процессы жизнедеятельности организма: обмен веществ, превращение энергии, передача наследственной информации. 2. Клеточный уровень – на этом уровне происходит передача информации и превращение веществ и энергии. 3. Организменный – элементарной единицей этого уровня служи особь, с системами органов специализированных для выполнения определенных функций. 4. Популяционно–видовой – совокупность организмов одного и того же вида, объединенных общим местом обитания, в котором создается популяция – надорганизменная система. В этой системе осуществляются элементарные эволюционные преобразования. 5. Биогеоценотический. Биогеоценоз – совокупность организмов разных видов и различной сложности организации с факторами среды их обитания. В процессе совместного исторического развития организмов разных систематических групп, образуются динамичные, устойчивые сообщества. 6. Биосферный - совокупность всех биогеоценозов, система охватившая все явления жизни на нашей планете. На этом уровне происходит круговорот веществ и превращения энергии, связанные с жизнедеятельностью всех живых организмов.
2.Направления эволюции – биологический прогресс и регресс.
Эволюционный прогресс в целом непрерывно идет в направлении максимального приспособления живых организмов к условиям окружающей среды. Смена условий часто приводит к замене одних приспособлений на другие. Однако это же относится к приспособлениям широкого характера, дающим организмам преимущества в различных условиях среды. Таково, например, значение легких как универсального органа газообмена для наземных позвоночных или цветка как совершенного органа размножения у покрытосеменных растений. Таким, образов биологический прогресс может осуществляться благодаря как частным, так и общим приспособлениям организма. Под биологическим прогрессом следует понимать возрастание приспособленности организма к окружающей среде, ведущей к увеличению численности и более широкому распространению вида. Эволюционные изменения, происходящие с некоторыми видами и более крупными таксонами (семействами, отрядами), при резких колебаниях условий среды не всегда оказываются полезными, не ведет к прогрессу. В таких случаях говорят о биологическом регрессе. Биологический регресс – это снижение уровня приспособленности к условиям обитания, уменьшение численности вида и площади видового ареала. Однако не всегда увеличение численности и широкое распространение связаны с крупными изменениями в уровне организации, например серая крыса. Её ареал и численность за последние несколько лет сильно возрастали, но никаких существенных эволюционных изменений для этого не потребовалось.
1.Транскрипция. Генетический код. Свойства генетического кода.
Транскрипция – это процесс считывания информации РНК, осуществляемой и-РНК полимеразой. 1. ДНК – носитель всей генетической информации в клетке, непосредственного участия в синтезе белков не принимает. К рибосомам – местам сборки белков – высылается из ядра несущий информационный посредник, способный пройти поры ядерной мембраны. Им является и-РНК. По принципу комплементарности она считывает с ДНК при участии фермента называемого РНК – полимеразой. В процессе транскрипции можно выделить 4 стадии: 1) Связывание РНК-полимеразы с промотором, 2) инициация – начало синтеза. Оно заключается в образовании первой фосфодиэфирной связи между АТФ и ГТФ и два нуклеотидом синтезирующей молекулы и-РНК, 3) элонгация – рост цепи РНК, т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды в транскрибируемой ните ДНК, 4) Терминация – завершения синтеза и-РНК. Промотор – площадка для РНК-полимеразы. Оперон – часть одного гена ДНК. Генетический код – это система записи информации о последовательности расположения аминокислот в белках с помощью последовательного расположения нуклеотидов в и-РНК. Св-ва ген. кода: 1) Код триплетен. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, называется триплетом или кодоном. 2) Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном (исключение метионин и триптофан) 3) Код однозначен – каждый кодон шифрует только 1 аминокислоту 4) Между генами имеются «знаки препинания» (УАА,УАГ,УГА) каждый из которых означает прекращение синтеза и стоит в конце каждого гена. 5) Внутри гена нет знаков препинания. 6) Код универсален. Генетический код един для всех живых на земле существ.
1.Виды транспорта через плазматическую мембрану.
В клетке существует 4 основных вида транспорта: 1) Диффузия, 2) Осмос, 3) Активный транспорт, 4) эндо и экзоцитоз. 1) Диффузия – это перемещение веществ по диффузному градиенту, т.е. из области высокой концентрации, в область с низкой концентрацией. Медленно диффундируют ионы, глюкоза, аминокислоты, липиды и т.д. Быстро диффундируют жирорастворимые молекулы. Облегченная диффузия является модификацией диффузии. Наблюдается в том случае, когда определенному веществу помогает пройти через мембрану какая-либо специфическая молекула, т.е. у этой молекулы есть свой канал, через который она легко проходит (поступление глюкозы в эритроциты). 2) Осмос – это дифундированние воды через полупроницаемые мембраны. 3) Активный – это перенос молекул или ионов через мембрану, против градиента концентрации и электрохимического градиента. В клетке между двумя сторонами плазматической мембраны поддерживается разность потенциалов – мембранный потенциал. Внешняя среда положительный заряд, а внутренняя отрицательный. Поэтому в клетку будут стремится катионы Na, K, а анионы хлора будут отталкиваться. Примером активного транспорта имеющегося в большинстве клеток является натриево-калиевый насос. 4) Эндо и экзоцитоз. Плазматическая мембрана принимает участие в выведении веществ из клетки, это происходит в процессе экзоцитоза. Так выводятся гормоны, полисахариды, белки, жировые капли и др. продукты клетки. Они заключаются в пузырьки, ограниченные мембраной, и подходят к плазмолемме. Обе мембраны сливаются и содержимое пузырька выводится наружу. Фагоцитоз - захват и поглощение клеткой крупных частиц. Пиноцитоз – процесс захвата и поглощения капелек жидкости.
1.Плазматическая мембрана – особенности строения, функции.
Плазматическая мембрана отделяет содержимое клетки от окружающей среды. Все содержимое клетки за исключением ядра получило название цитоплазма. Строение мембраны: а) ранние работы по изучению проницаемости мембран показали, что органические растворители (спирт, эфир) проникают через мембрану быстрее, чем вода. Значит в мембране есть неполярная часть т.е. липиды, б) в 1935г. ученые предположили что в мембране имеется липидный бислой, заключенный между 2 слоями белка, в) 1959г. Роберстсон выдвинул гипотезу о строении элементарной мембраны. Он установил, что толщина мембраны 7,5 нм.В электронном микроскопе все мембраны представлены трехслойными. Трехслойность – это расположение белков и полярных липидов, г) методом замораживания-скалывания мембраны разделяются и легко изучается их структура. Благодаря этому методу были выявлены белки погруженные в липидный бислой, д) 1972г. Сингер и Николсон предложили жидко-мозаичную модель биологической мембраны. Белковые молекулы плавают в липидном бислое образуя своеобразную мозаику. Ф-ции: 1. Отделяет клеточное содержимое от внешней среды. 2) Регулирует обмен между клеткой и средой. 3) Делит клетку на отсеки. 3) Некоторые химические реакции проходят в мембранах (окислительное фосфорелирование). 5) Поддерживает постоянную форму клетки. 6) Находятся рецепторные участки. Клеточные мембраны обладают избирательной проницательностью, т.е способностью регулировать проникновение в клетку различных веществ в нужных количествах.
3.Мышцы, их функции. Основные группы мышц человеческого тела.
В организме человека около 600 скелетных мышц, у новорожденных масса всех мышц составляет 23%, 8 лет 27%, 17-18 лет 43-44%, а у спортсменов 50%. Отдельные мышечные группы растут неравномерно. У грудных детей вначале развиваются мышцы живота, жевательные мышцы, к концу года мышцы спины и конечностей. Рост мышц продолжается до 25 лет. У мышцы различают среднюю часть – брюшко, состоящее из мышечной ткани и сухожилие, образованное плотной соединительной тканью. С помощью сухожилий мышцы прикрепляются к костям, некоторые мышцы прикрепляются к органам (к глазному яблоку, коже). Каждая мышца состоит из большого количества поперечно-полосатых мышечных волокон расположенных параллельно и связанных в пучки с помощью рыхлой соединительной ткани. Вся мышца снаружи покрыта тонкой соединительной оболочкой (фасцией). Мышцы богаты кровеносными сосудами. В мышцах имеются лимфатические сосуды. Так же в мышцах расположены нервные окончания – рецепторы, которые воспринимают степень сокращения и растягивания мышц. Форма и величина мышц зависит от выполняемой функции. Различают: 1) длинные (располагаются на конечностях: бицепсы, трицепсы, бедренные мышцы, икроножная мышца), 2) короткие (мышцы между позвонками, то есть они располагаются там, где размах движения мал), 3) широкие мышцы располагаются на туловище, в стенках полостей (трапециевидная, широчайшая мышца спины), 4) круговые мышцы располагаются вокруг отверстий тела и при сокращении суживают их (сфинктеры). По функциям различают мышцы сгибатели, разгибатели, проводящие, отводящие и мышцы вращающие внутрь и наружу. Основные группы мышц: 1) Мышцы туловища. К мышцам туловища относятся мышцы грудной клетки, мышцы живота, мышцы спины. Межреберные мышцы, а также другие мышцы грудной клетки участвуют в функции дыхания – называются дыхательными. К ним принадлежит и диафрагма. Мышцы груди (большая и малая грудные мышцы, зубчатая мышца) приводят в движение Мышцы живота образуют стенку брюшной полости и благодаря своему тонусу поддерживают внутренние органы от смещения, опускания, выпадения. Сокращаясь мышцы живота действуют на
внутренние органы в качестве брюшного пресса, что способствует выделению мочи, кала, а также родовому акту, способствует движению крови по венозной системе и осуществляют ф-цию дыхания. К мышцам брюшной стенки относятся и укрепляют на туловище верхние конечности. прямая мышца живота, перомидальная, квадратная мышцы поясницы, широкие мышцы живота. По средней линии живота тянется плотный сухожильный тяж, по бокам располагаются прямая мышца живота с продольным направлением волокон. На спине расположены многочисленные мышцы вдоль позвоночного столба – это глубокая мышца спины, они прикрепляются к отросткам позвонков – эти мышцы участвуют в движении позвоночника назад и в стороны. К поверхностным мышцам спины относятся трапециевидная мышца, широчайшая мышца спины – они участвуют в движении верхних конечностей и грудной клетки. Мышцы головы. К мышцам головы относят: жевательные, мимические мышцы. К жевательным относят височную, жевательную, крыловидную. Сокращение этих мышц вызывает движение нижней челюсти. Мимические мышцы одним, а иногда двумя концами прикрепляются к коже лица, при сокращении они смещают кожу – вызывая мимику. Круговые мышцы глаза и рта также относят к мимическим. Мышцы шеи: Запрокидывают, поворачивают, наклоняют голову. Лестничные мышцы поднимают ребра. Мышцы прикрепленные к подъязычной кости изменяют положение языка и гортани. Мышцы пояса верхних конечностей приводят в движение верхнюю конечность в плечевом суставе, среди них важнейшая дельтовидная мышца. При её сокращении мышца сгибает руку в плечевом суставе и отводит руки до горизонтального положения. В области плеча расположены мышцы трехглавые мышцы сгибатели, и двуглавые разгибатели. Среди мышц кисти ладонная мышца и сгибатели пальцев. Пояс нижних конечностей. Мышцы расположенные там приводят в движение ногу в тазобедренном суставе, а также позвоночный столб. На бедре располагается самая длинная мышца в человеческом теле (до 50 см) –портняжная. Она сгибает ногу в колене и тазобедренном суставах. Под ней лежит четырехглавая мышца бедра, она обеспечивает разгибание коленного сустава. На задней поверхности голени находится икроножная мышца, которая сгибает голень и вращает стопу.
1.Нуклеиновые кислоты. Строение, виды и функции РНК.
Молекула РНК полимер мономерами которой являются нуклеотиды. РНК представляет собой однонитивую молекулу, состоящую из азотистого основания, пентозы и фосфорной кислоты. Три азотистых основания такие же как у ДНК, но вместо тимина урацил. Содержание РНК в клетках сильно колеблется. Оно заметно повышено в клетках в которых происходит синтез белка. Виды РНК: 1) Транспортная РНК (т-РНК). Молекулы т – РНК самые короткие: они состоят всего из 80-100 нуклеотидов. Транспортная РНК в основном содержится в цитоплазме клетки. Функция состоит в переносе аминокислот в рибосомы, к месту синтеза белка. Из общего содержания РНК клетки на долю т-РНК приходится 10%. 2) Рибосомная РНК (р-РНК). Это самые крупные РНК: в их молекулу входит 3-5 тысяч нуклеотидов. Р-РНК составляет существенную часть структуры рибосомы. Из общего содержания РНК клетки на долю р-РНК приходится 90%. 3) Информационная РНК или матричная. Содержится в ядре и цитоплазме. Функция её состоит в переносе информации о структуре белка в рибосомах. На долю и-РНК приходится примерно 0,5-1% от общего содержания РНК клетки.
3.Газообмен в легких и тканях. Жизненная емкость легких.
Газообмен между воздухом и кровью осуществляется в альвеолах. Альвеолярный воздух является внутренней газовой средой организма, от состава которой зависит и состав артериальной крови. Поэтому регуляторные механизмы организма поддерживают постоянство состава альвеолярного воздуха независимо от фаз вдоха или выдоха. Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и стенки капилляров очень тонкие, что способствует проникновению газов из альвеолярного воздуха в кровь и наоборот. Газообмен зависит от поверхности, через которую осуществляется диффузия газов, и разности парциального давления газов. В тканях кислород поступает из крови в тканевую жидкость и затем в клетки, а углекислота из тканей переходит в кровь. Жизненная емкость легких составляет: дыхательный объем(1500 м3) + резервный объем вдоха (1500 см3) + резервный объем выдоха (1500 см3).
1.Строение и функции липидов.
Липос в переводе жир. Этим веществам дают расплывчатое определение т.е. принято говорить, что это не растворимые в воде органические вещества, которые можно извлечь из клетки органическими растворителями (хлороформом, эфиром, бензолом). Однако настоящиее липиды – это сложные эфиры жирных кислот или какого-либо спирта. Компоненты липидов: Жирные кислоты – содержат в своей молекуле COOH. Жирными кислотами их называют потому, что некоторые высокомолекулярные члены этой группы входят в состав жиров. Различают жиры и масла. Жиры плавятся при комнатной температуре, а масла нет. Это происходит от того что в маслах содержится больше непредельных жирных кислот (двойная связь). Важнейшими липидами являются стероиды (желчные кислоты, холестерол, половые гомоны, витамин Д и др), терпены (ростковые вещества растений – гиббереллины, каротины, витамин К), воска, фосфо и гликолипиды, липопротеиды. Значение липидов: 1) Липиды играют важную роль как источники энергии. При окислении они дают в 2 раза больше энергии, чем углеводы и белки. Животные впадая в спячку расходуют их в процессе жизнедеятельности. 2) Нерастворимость в воде делает липиды важнейшими структурными компонентами клеточных мембран, состоящих главным образом из фосфолипидов. 3) Благодаря низкой теплопроводности липиды выполняют защитные функции. 4) Липиды – источник воды. При окислении 100г жира образуется примерно 105г воды. Эта функция важна для животных, например для верблюда.
3.Витамины, их роль в обмене веществ. Гипо-, гипервитаминозы.
Витамины – необходимые для жизнедеятельности человека органические вещества различной химической природы, которые поступают в организм с пищей, реже образуются в нем. Они не являются пластическим материалом или источником энергии, а служат компонентами ферментных систем и катализаторами различных обменных процессов. Источниками витаминов являются пищевые продукты растительного и животного происхождения. Суточная потребность организма в витаминах мала. При длительном их отсутствии в пище развиваются заболевания – авитаминозы, при их недостатке – гиповитаминозы. В настоящее время описано несколько десятков витаминов. Их принято обозначать заглавными буквами латинского алфавита. По растворимости все витамины делят на 2 группы: жирорастворимые (А, D, E, K) и водорастворимые (В, С, РР).