Технологическая карта урока


Білім алушылардың біліктілігі мен дағдысын тексеру/



бет3/4
Дата08.04.2022
өлшемі190 Kb.
#138406
түріСабақ
1   2   3   4
Байланысты:
Понятие многогранника. Призма и ее элементы, виды призм. Развертка, площадь боковой

Білім алушылардың біліктілігі мен дағдысын тексеру/Проверка знаний и умений обучающихся (өткен тақырыпты пысықтау/ обобщение пройденной темы)
Өткен сабақты пысықтау мақсатында тест тапсырмаларына жауап беру. (Таратпа қағаздар).


Жаңа тақырыптың мазмұны мен жүйесі /
Содержание и последовательность изложения новой темы.

Многогранник — это тело, ограниченное конечным числом плоскостей. Эти плоскости, пересекаясь, образуют грани многогранника — многоугольники. Стороны этих многоугольников называются рёбрами многогранника, а концы рёбер — его вершинами.


Призма – это геометрическая фигура в пространстве; многогранник с двумя параллельными и равными гранями (многоугольниками), а другие грани при этом являются параллелограммами.
На рисунке ниже представлен один из самых распространенных видов призмы – четырехугольная прямая (или параллелепипед). Другие разновидности фигуры рассмотрены в последнем разделе данной публикации.

Элементы призмы
Для рисунка выше:
· Основания – равные многоугольники. Это могут быть треугольники, четырех-, пяти-, шестиугольники и т.д. В нашем случае – это параллелограммы (или прямоугольники) ABCD и A1B1C1D1.
· Боковые грани – это параллелограммы: AA1B1BBB1C1CCC1D1D и AA1D1D.
· Боковое ребро – отрезок, соединяющий соответствующие друг другу вершины разных оснований (AA1BB1CC1 и DD1). Является общей стороной двух боковых граней.
· Высота (h) – это перпендикуляр, проведенный от одного основания к другому, т.е. расстояние между ними. Если боковые ребра расположены под прямым углом к основаниям фигуры, значит они одновременно являются и высотами призмы.
· Диагональ основания – отрезок, который соединяет две противолежащие вершины одного и того же основания (ACBDA1C1 и B1D1). У треугольной призмы данного элемента нет.
· Диагональ боковой грани – отрезок, который соединяет две противолежащие вершины одной и той же грани. На рисунке изображены диагонали только одной грани (CD1 и C1D), чтобы не перегружать его.
· Диагональ призмы – отрезок, соединяющий две вершины разных оснований, не принадлежащих одной боковой грани. Мы показали только две из четырех: AC1 и B1D.
· Поверхность призмы – суммарная поверхность двух ее оснований и боковых граней. Формулы для расчета площади поверхности (для правильной фигуры) и объема призмы представлены в отдельных публикациях.
Развёртка призмы – разложение всех граней фигуры в одной плоскости (чаще всего, одного из оснований). В качестве примера – для прямоугольной прямой призмы:

Примечание: свойства призмы представлены в отдельной публикации.
Варианты сечения призмы
1. Диагональное сечение – секущая плоскость проходит через диагональ основания призмы и два соответствующих боковых ребра.

Примечание: У треугольной призмы нет диагонального сечения, т.к. основанием фигуры является треугольник, у которого нет диагоналей.
2. Перпендикулярное сечение – секущая плоскость пересекает все боковые ребра под прямым углом.

Примечание: другие варианты сечения не так распространены, поэтому отдельно на них останавливаться не будем.
Виды призм
Рассмотрим разновидности фигуры с треугольным основанием.
1. Прямая призма – боковые грани расположены под прямым углом к основаниям (т.е. перпендикулярны им). Высота такой фигуры равняется ее боковому ребру.
2. Наклонная призма – боковые грани фигуры не перпендикулярны ее основаниям.
3. Правильная призма – основаниями являются правильные многоугольники. Может быть прямой или наклонной.

Усеченная призма – часть фигуры, оставшаяся после пересечения ее плоскостью, не параллельной основаниям. Также может быть как прямой, так и наклонной.




Достарыңызбен бөлісу:
1   2   3   4




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет