9.4.3.Теплопроводность через плоскую стенку при граничных условиях первого рода
Р
|
Рис. 9.2. Однородная плоская стенка
|
ассмотрим однородную плоскую стенку толщиной δ (рис. 9.2). На наружных поверхностях стенки поддерживаются постоянные температуры tс1 и tс2. Коэффициент теплопроводности стенки постоянен и равен λ. При стационарном режиме ( ) и отсутствии внутренних источников теплоты (qv=0) дифференциальное уравнение теплопроводности примет вид:
При заданных условиях температура будет изменяться только в направлении, перпендикулярном плоскости стенки (ось Оx). В этом случае
и дифференциальное уравнение теплопроводности перепишется в виде:
Граничные условия первого рода запишутся следующим образом: при x=0 t=tc1; при x=δ t=tc2. Интегрируя уравнение (9.17), находим
После второго интегрирования получаем
Постоянные С1 и С2 определим из граничных условий: при x=0 t=tc1, С2=tc1; при x=δ t=tc2=С1·δ+tc1, отсюда . Подставляя значения С1 и С2 в уравнение (9.18), получим уравнение распределения температуры по толщине стенки:
Для определения плотности теплового потока, проходящего через стенку в направлении оси Оx, воспользуемся законом Фурье, согласно которому .
Учитывая, что , получим
Общее количество теплоты, которое передается через поверхность стенки F за время τ,
Отношение называют тепловой проводимостью стенки, обратную ей величину - термическим сопротивлением теплопроводности. Поскольку величина λ зависит от температуры, в уравнения (9.20), (9.21) необходимо подставить коэффициент теплопроводности λс, взятый при средней температуре стенки.
Достарыңызбен бөлісу: |