Доверительный интервал
Выборка из популяции позволяет получить точечную оценку интересующего нас параметра и вычислить стандартную ошибку для того, чтобы указать точность оценки. Следует отметить, что для большинства исследований стандартная ошибка как таковая неприемлема, поскольку она, в отличие от стандартного отклонения, не отражает вариабельности в значениях данных. Гораздо полезнее объединить эту меру точности с интервальной оценкой для параметра популяции. Для этого нужно вычислить доверительный интервал (ДИ), который дает вероятное значение верхней и нижней границ оцениваемой неизвестной величины, что позволяет заявить: «Я утверждаю, что точное значение неизвестной величины с определённой вероятностью (чаще всего эта вероятность составляет 0,95) находится между этими двумя числами».
Обычно доверительные интервалы показывают, насколько надежной в действительности является статистическая оценка. Например, утверждение, что в результате проведения лечебных мероприятий у группы больных среднее значение АД = 119,5 мм рт.ст. содержит некоторую определенную информацию. Однако утверждение, что врач на 95% уверен в том, что истинное (среднее популяционное) АД будет находиться в пределах от 115 до 125 мм рт.ст., позволяет сделать гораздо более глубокие выводы об эффективности лечения.
Доверительный интервал визуально удобно представлять в виде ящика с усами. Ящик с усами (англ. box-and-whiskers plot, box plot) – график, компактно изображающий одномерное распределение вероятностей. Несколько таких ящиков можно нарисовать бок о бок, чтобы визуально сравнивать одно распределение с другим.
В случае нормального распределения «ящик» рисуется на промежутке , где t– коэффициент Стьюдента – величина, зависящая от объема выборки (или соответствующего числа степеней свободы) и выбранного уровня доверительной вероятности, определяется по таблицам распределения Стьюдента; а m – стандартная ошибка среднего. Внутри «ящика» проводится риска – среднее арифметическое (рис. 1).
Рис. 1. Доверительный интервал для среднего в случае нормального распределения.
В случае распределения, отличного от нормального, вычисляют медиану x50, квартили (x25, x75) и статистически значимый диапазон — например: ; .
«Ящик» рисуется от квартиля до квартиля, внутри него проводится риска – медиана. «Усы» тянутся от квартилей до статистически значимых крайних точек x1 и x2. Не входящие в статистически значимый диапазон точки (выбросы) изображаются отдельно (рис. 2).
Рис. 2. Доверительный интервал для среднего (медианы) в случае распределения, отличного от нормального.
Доверительные интервалы представляют оценку в некоторой перспективе и позволяют избежать необходимости указывать одно и то же число как точное значение, в то время как фактически в биологии это число точным никогда и не является.
При интерпретации ДИ исследователь формулирует следующие вопросы:
Насколько широк ДИ? Широкий ДИ указывает на менее точную оценку, узкий - на более точную оценку.
Какой клинический (биологический) смысл можно извлечь из рассмотрения ДИ? Верхние и нижние пределы показывают, будут ли результаты клинически (биологически) значимы.
Достарыңызбен бөлісу: |