Задача 4. Монета подбрасывается 3 раза. Найти наиболее вероятное число успехов (выпадений герба).
Решение. Возможными значениями для числа успехов в трех рассматриваемых испытаниях являются m = 0, 1, 2 или 3. Пусть Am - событие, состоящее в том, что при трех подбрасываниях монеты герб появляется m раз. По формуле Бернулли легко найти вероятности событий Am (см. таблицу):
-
m
|
0
|
1
|
2
|
3
|
Pn(m)
|
1/8
|
3/8
|
3/8
|
1/8
|
Из этой таблицы видно, что наиболее вероятными значениями являются числа 1 и 2 (их вероятности равны 3/8). Этот же результат можно получить и из теоремы 2. Действительно, n=3, p=1/2, q=1/2. Тогда
, т.е. .
Задача 5. В результате каждого визита страхового агента договор заключается с вероятностью 0,1. Найти наивероятнейшее число заключенных договоров после 25 визитов.
Решение. Имеем n=10, p=0,1, q=0,9. Неравенство для наиболее вероятного числа успехов принимает вид: 250,1–0,9m*250,1+0,1 или 1,6m*2,6. У этого неравенства только одно целое решение, а именно, m*=2.
Задача 6. Известно, что процент брака для некоторой детали равен 0,5%. Контролер проверяет 1000 деталей. Какова вероятность обнаружить ровно три бракованные детали? Какова вероятность обнаружить не меньше трех бракованных деталей?
Решение. Имеем 1000 испытаний Бернулли с вероятностью «успеха» р=0,005. Применяя пуассоновское приближение с λ=np=5, получаем
1) P1000(3) ;
2) P1000(m3)=1P1000(m<3)=1[ ]1 ,
и Р1000(3)0,14; Р1000(m3)0,875.
Достарыңызбен бөлісу: |