Задача 3. Совместный закон распределения случайных величин x и h задан c помощью таблицы
x h
|
1
|
2
|
–1
|
1/16
|
3/16
|
0
|
1/16
|
3/16
|
1
|
1/8
|
3/8
|
Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они. Вычислить вероятность .
Решение. Частное распределение для x получается суммированием вероятностей в строках:
;
;
.
Аналогично получается частное распределение для h:
;
.
Полученные вероятности можно записать в ту же таблицу напротив соответствующих значений случайных величин:
x h
|
1
|
2
|
px
|
–1
|
1/16
|
3/16
|
1/4
|
0
|
1/16
|
3/16
|
1/4
|
1
|
1/8
|
3/8
|
1/2
|
ph
|
1/4
|
3/4
|
1
|
Теперь ответим на вопрос о независимости случайных величин x и h. С этой целью для каждой клетки совместного распределения вычислим произведение (т.е. сумм по соответствующей строке и столбцу) и сравним его со значением вероятности в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т.е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.
Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.
Для вычисления вероятности отметим клетки, для которых выполнено условие . Таких клеток всего три, и соответствующие вероятности в этих клетках равны 1/8, 3/16, 3/8. Их сумма равна 11/16, это и есть искомая вероятность. Вычисление этой вероятности можно записать так:
Достарыңызбен бөлісу: |