Задачи по теории вероятностей с решениями



бет16/17
Дата19.12.2021
өлшемі0,65 Mb.
#103452
түріЗадача
1   ...   9   10   11   12   13   14   15   16   17
Байланысты:
Zadaniya s rech kMod1(18.02.13)

Задача 3. Совместный закон распределения случайных величин x и h задан c помощью таблицы

x h

1

2

–1

1/16

3/16

0

1/16

3/16

1

1/8

3/8

Вычислить частные законы распределения составляющих величин x и h. Определить, зависимы ли они. Вычислить вероятность .



Решение. Частное распределение для x получается суммированием вероятностей в строках:

;

;

.

Аналогично получается частное распределение для h:



;

.

Полученные вероятности можно записать в ту же таблицу напротив соответствующих значений случайных величин:




x h

1

2

px

–1

1/16

3/16

1/4

0

1/16

3/16

1/4

1

1/8

3/8

1/2

ph

1/4

3/4

1

Теперь ответим на вопрос о независимости случайных величин x и h. С этой целью для каждой клетки совместного распределения вычислим произведение (т.е. сумм по соответствующей строке и столбцу) и сравним его со значением вероятности в этой клетке. Например, в клетке для значений x=-1 и h=1 стоит вероятность 1/16, а произведение соответствующих частных вероятностей 1/4×1/4 равно 1/16, т.е. совпадает с совместной вероятностью. Это условие так же проверяется в оставшихся пяти клетках, и оно оказывается верным во всех. Следовательно, случайные величины x и h независимы.

Заметим, что если бы наше условие нарушалось хотя бы в одной клетке, то величины следовало бы признать зависимыми.

Для вычисления вероятности отметим клетки, для которых выполнено условие . Таких клеток всего три, и соответствующие вероятности в этих клетках равны 1/8, 3/16, 3/8. Их сумма равна 11/16, это и есть искомая вероятность. Вычисление этой вероятности можно записать так:






Достарыңызбен бөлісу:
1   ...   9   10   11   12   13   14   15   16   17




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет