Задачи по теории вероятностей с решениями



бет6/17
Дата19.12.2021
өлшемі0,65 Mb.
#103452
түріЗадача
1   2   3   4   5   6   7   8   9   ...   17
Байланысты:
Zadaniya s rech kMod1(18.02.13)

Задача 5. Пусть в урне имеется N шаров, из них М белых и N–M черных. Из урны извлекается n шаров. Найти вероятность того, что среди них окажется ровно m белых шаров.

Решение. Так как порядок элементов здесь несущественен, то число всех возможных наборов объема n из N элементов равно числу сочетаний . Число испытаний, которые благоприятcтвуют событию А – "m белых шаров, n–m черных", равно , и, следовательно, искомая вероятность равна Р(А)= .

Задача 6. Точку наудачу бросили на отрезок [0; 2]. Какова вероятность ее попадания в отрезок [0,5; 1,4]?

Решение. Здесь пространство элементарных исходов весь отрезок , а множество благоприятствующих исходов , при этом длины этих отрезков равны и соответственно. Поэтому

.



Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   ...   17




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет