Электростатика — раздел электродинамики, изучающий взаимодействие неподвижных электрических зарядов.
Между одноимённо заряженными телами возникает электростатическое (или кулоновское) отталкивание, а между разноимённо заряженными — электростатическое притяжение. Явление отталкивания одноименных зарядов лежит в основе создания электроскопа — прибора для обнаружения электрических зарядов.
В основе электростатики лежит закон Кулона. Этот закон описывает взаимодействие точечных электрических зарядов.
Закон Кулона
Закон Кулона — это закон о взаимодействии точечных электрических зарядов.
Был открыт Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:
Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.
1.Точечность зарядов — то есть расстояние между заряженными телами на много больше их размеров.
2. Их неподвижность. Иначе уже надо учитывать дополнительные эффекты: возникающее магнитное поле движущегося заряда и соответствующую ему дополнительную силу Лоренца, действующую на другой движущийся заряд.
3.Взаимодействие в вакууме.
Закон сохранения электрического заряда
В конце XVIII Кулон установил на опыте количественный закон взаимодействия электрических зарядов. Для заряженных тел произвольной формы такого закона сформулировать нельзя, поскольку сила взаимодействия протяженных тел зависит от их формы и взаимного расположения. Но иногда размеры тела пренебрежимо малы по сравнению с расстоянием до других зарядов. Такое заряженное тело называют точечным зарядом. Для точечных зарядов возможно сформулировать закон взаимодействия, имеющий общее значение.
В результате своих опытов Кулон установил, что сила взаимодействия двух точечных зарядов направлена вдоль линии, соединяющей оба заряда, обратно пропорциональна квадрату расстояния между зарядами и пропорциональна величине обоих зарядов. Таким образом:
F=k·(q1·q2)/r2.
В этой формуле k - коэффициент пропорциональности, зависящий от выбора системы единиц. В системе СИ k=1/4pe0=9·109 н·м2/k2. Единица измерения электрического заряда в системе СИ - [Кулон]. В любой замкнутой системе заряженных тел алгебраическая сумма зарядов остается постоянной. Это закон сохранения зарядов. Между заряженными телами, входящими в данную систему, заряды могут перераспределяться в результате соприкосновения тел.
Электрическое поле.
Для объяснения происхождения и передачи сил, действующих между покоящимися зарядами в рамках теории близкодействия, вводится понятие электрического поля. Когда в каком-то месте пространства возникает электрический заряд, вокруг него возникает электрическое поле. Основное свойство этого поля в том, что на всякий другой заряд, помещенный в это поле, действует сила.
Напряженность электрического поля.
Для количественной характеристики электрического поля служит специальная физическая величина - напряженность электрического поля. Напряженность электрического поля в данной точке измеряется силой, действующей на единичный положительный заряд, помещенный в эту точку. Если сформулировать по другому, напряженность есть величина, равная отношению силы, действующей на положительный пробный заряд, помещенный в данную точку поля, к этому заряду. То есть для точечного заряда
Электрическое поле точечного заряда
Поскольку сила - вектор, а заряд - скаляр, то напряженность тоже вектор. Если поле вызвано положительным зарядом, то вектор напряженности направлен вдоль радиуса-вектора от заряда во внешнее пространство (отталкивание положительного пробного заряда), если поле вызвано отрицательным зарядом, вектор напряженности направлен к заряду. Для точечных зарядов электрические поля складываются по правилу векторов, то есть: напряженность результирующего поля есть векторная сумма напряженностей полей, создаваемых отдельными зарядами. Напряженность электрического поля металлической заряженной сферы совпадает с полем точечного заряда, имеющего тот же заряд и помещенного в точке, соответствующей центру сферы. Внутри полой сферы напряженность равна нулю. Напряженность поля, создаваемого бесконечно длинной равномерно заряженной нитью (или цилиндром):
E=k·2t/r,
где t - линейная плотность заряда (заряд, приходящийся на единицу длины нити или цилиндра). Напряженность поля бесконечной равномерно заряженной плоскости:
При внесении в электрическое поле каких-либо диэлектриков в них происходят изменения, а именно, возникают индукционные заряды: на ближайшей к влияющему заряженному телу части диэлектрика возникают разноименные с зарядом влияющего тела, а на удаленной части диэлектрика - одноименные заряды. То есть, на первоначально незаряженном диэлектрике в электрическом поле возникают электрические заряды, появляются электрические полюсы. Это явление получило название поляризации диэлектриков.
Если в электрическом поле разъединить диэлектрик, то после удаления поля диэлектрик станет электрически нейтральным (в отличие от проводника). Это связано с тем, что в диэлектрике заряды обеих знаков связаны друг с другом и могут перемещаться только в пределах молекулы (в отличие от свободных электронов в проводнике).
Разность потенциалов
Если в качестве перемещаемого заряда выбран положительный заряд величиной +1, то, поскольку работа по его перемещению зависит только от существующего электрического поля, она может служит характеристикой этого поля. Она называется разностью потенциалов начальной и конечной точек в данном электрическом поле или электрическим напряжением между начальной и конечной точками.
Таким образом, работа по перемещению заряда q из точки 1 в точку 2 равна:
A12=qU12.
Физический смысл имеет именно разность потенциалов. Поэтому, когда говорят о потенциале в данной точке, всегда подразумевают, что вторая точка выбрана "на бесконечности", то есть достаточно удаленно от всех заряженных тел.