05В010100 – «Мектепке дейінгі оқыту мен тәрбиелеу» мамандығы үшін


Жиын ұғымы және жиынның элементтері



бет16/81
Дата07.02.2022
өлшемі260,12 Kb.
#83635
1   ...   12   13   14   15   16   17   18   19   ...   81
Байланысты:
071d3acd-7f13-11e5-8348-f6d299da70eeФЭМП каз

Жиын ұғымы және жиынның элементтері



  1. Математикада XIX ғасырдың екінші жартысында жиын ұғымы пайда болды. Жиын ұғымының математикаға енуі жиын теориясын қалыптастырды. Жиын теориясының негізін қалаушы неміс математигі Георг Кантор (1845-1918) болды.

Жиын ұғымы математиканың негізгі, алғашқы ұғымдарының бірі, сондықтан ол басқа ұғымдар арқылы анықталмайды.
Сан ұғымынан бұрын шыққан жиын ұғымын қандай да бір нәрселердің жинағы ретінде түсінеміз, ол жинаққа кіретін нәрселерді жеке-жеке қабылдауға және оларды бір-бірінен де, бұл жинаққа жатпайтын басқа нәрселерден де ажыратуға болады деп білеміз.
«Жиын» деген сөз математикада «көптіктің» мағынасында, оның бір баламасы ретінде қолданылады. Ол сөз жоғарыда айтқанымыздай «жинақ», «жиынтық» мағынасын білдіреді. Жиындар алуан-алуан объектілерден құралуы мүмкін, ол объектілері жиынның мүшелері немесе элементтері деп аталады. Мысалы, «адамдар жиыны» тірі табиғат объектілерінен құралса, «кітап жиыны» жансыз табиғат объектілерінен құралады. Ал бүтін сандар жиынын алсақ, бұл жиын нақтылы объектілерден емес, дерексіз ұғымдардан тұрады. Сөйтіп, не туралы пікір қорытып, ойлай алатын болсақ, солардың бәрі де жиын элементтері бола алады. Сондай-ақ жиын атаулының бәрі біртектес объектілерден құралуы да шарт емес. Мысалы, элементтері оқушы, кітап, қалам, дәптер болатын жиын немесе үстел үстіндегі нәрселердің: шам, кітап, алма, қалам жиыны туралы сөз етуге болады. Жиын жалғыз ғана элементтен де құралуы мүмкін. Мысалы, Жердің барлық табиғи серіктерінің жиыны жалғыз серіктен – Айдан тұрады. Жиынның элементтерінің өздері жиындар болуы мүмкін. Мысалы, элементтерінің саны екіге тең жиындардың жиынын алатын болсақ, мұндай жиынның элементтері деп «су» сөзіндегі әріптер жиыны, адамның құлақтарының , көздерінің, қолдарының , құстың қанаттарының т.с.с. жиынын айтуға болады.
Жиын латын алфавитінің үлкен әрпімен А,В......,Z белгіленеді. Бір де бір элементі болмайтын жиынды құр(бос) жиын деп атайды. Оны Ø түрінде белгілейді. Жиынның элементтері латын алфавитінің кіші әріптерімен белгіленеді.
Жиынның кез-келген элементінің ол жиынға жататындығы(тиістілігі) немесе оған жатпайтындығы (тиісті еместігі) тағайындалған болса , ондай жиын толығынан анықталған жиын деп аталады. а элементінің М жиынына жататындығын тиістілік таңбасы арқылы белгілейміз: а Є М.
Бұлай белгілеуді сөзбен түрліше айтуға болады.
а дегеніміз М жиынының элементі.
а элементі М-ге тиісті.
а элементі М-ге енеді.
а элементі М-ң құрамындағы элемент
а элем-ң М жиынына жатпайтындығын а ¢ М деп белгілейді, оны да әртүрлі оқуға болады:
а дегеніміз М жиынының элементі емес
а элементі М-ге тиісті емес
а элементі м-ге енбейді
а элементі М-ң құрамындағы элемент емес.
Егер жиын ақырлы санды элементтерден тұрса, оны ақырлы жиын деп атаймыз. Ақырлы жиын саналымды жиын деп та аталады. Өйткені оның барлық элементтерін «біртіндеп санап» шығуға, яғни тізбектей нөмірлеуге болады. Мысалы, а1, а2, а3, а п , сонда барлық элемент те нөмірлеп, әртүрлі элемент түрліше көмірленеді.
Егер жиын ақырсыз санды элементтерден тұрса, оны ақырсыз жиын д.а. Ақырсыз жиын элементтерін біртіндеп санап шығуға болмайды
Құр емес жиынның әртүрлі элементтері болмаса , ондай жиын бірлік жиын д.а. Сонымен , егер жалғыз а элементі болып, ол М жиынында жататын болса, онда М жиыны бір элементті жиын деп аталады. Мұны былай жазып көрсетеміз: М= (а)



  1. Достарыңызбен бөлісу:
1   ...   12   13   14   15   16   17   18   19   ...   81




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет