Жылдамдық векторының өрісі. Ағын сызығы. Стационарлық ағыс. Ағын түтігі. Егер де сұйық сығылмайтын болған болса (яғни оның тығыздығы барлық жерде бірдей және өзгере алмайтын болса), онда S1 және S2 (4.1-сурет) қималарының арасындағы сұйық саны өзгеріссіз қала береді. Бұдан шығатыны, бір уақыт бірлігі ішінде S1 және S2 қималары арқылы өтетін сұйықтын көлемдері бірдей болулары керек:
S1v1=S2v2 . Ж оғарыда келтірілген пайымдауды S1 және S2 қималарының кез келген жұбына қолдануға болады. Демек, сығылмайтын сұйық үшін Sv шамасы тоқтың тура сол түтігінің кез келген қимасында бірдей болуы керек: 4.1-сурет
Алынған нәтиже ағынның үзіліссіздігі туралы теореманың мазмұнын білдіреді.
Сұйықтың қозғалысын қарастыра отырып көп жағдайда, сұйықтың кей бөлшектерінің басқаларға қатысты орын ауыстыруы үйкеліс күшінің тууымен байланыссыз деп есептеуге болады. Ішкі үйкелісі (тұтқырлығы) толығымен жоқ боп келетін сұйық – идеалды деп аталады.
Кез келген тоқтың ағын сызығының бойымен стационарлы ағымдағы сығылмайтын идеалды сұйықта мына шарт орындылады:
, мұнда – динамикалық қысым;
– нивелирлік қысым; p – статикалық қысым.
Бұл формула Бернулли теңдеуі деп аталады.
Идеалды сұйық, яғни үйкеліссіз сұйық, абстракция боп табылады. Барлық нақты сұйықтар мен газдарға көп не аз дәрежеде тұтқырлық немесе ішкі үйкеліс тән.
Әр түрлі жылдамдықпен бір-біріне параллелді қозғалушы сұйықтың екі көршілес қабатырының арасындағы үйкеліс күші Ньютонның тұтқырлы үйкеліс заңы бойында болады:
,
мұнда S – сұйық қабатының аумағы,
– сұйық қабаттары арасындағы жылдамдық градиенті,
– сұйықтың динамикалық тұтқырлығы деп аталады.
Сұйықтың (немесе газдың) ағымының екі түрін бақылауға болады. Біреуінде, сұйық, бір біріне қарасты, араласпастан сырғитын қабаттарға бөлінетін сияқты. Мұндай ағым ламинарлы (қабатты) деп аталады.
Жылдамдық немесе тасқынның көлденең мөлшері артқанда ағын сипаты елеулі түрде өзгереді. Сұйықтың лезде араласың кетуі туындайды. Мұндай ағын турбулентті деп аталады.
Ағылшын оқымыстысы Рейнолдс ағын сипатының мөлшерсіз шаманың мәніне тәуелді екендігін анықтаған:
, мұнда – сұйықтың (немесе газдың) тығыздығы,
v – тасқынның орташа жылдамдығы, – сұйықтың тұтқырлық коэффициенті, l – тән мөлшер.
Бұл шама Рейнольдс саны деп аталады. Рейнольдс санының аз мәндері тұсында ламинарлық ағын байқалады. Re-ң қайсібір белгілі мәнінен бастап, ол жиеленіс деп аталады, ағын турбуленттік сипатқа көшеді.