9.1B Комбинаторика және жиындар теориясының элементтері: Жиын ұғымы Белгілі бір ортақ қасиеттерге ие болып, белгілі бір заңдылықпен біріккен нәрселер, объектілер жиын құрайды. Мысалы:аспандағы жұлдыздар жиыны, кітап бетіндегі әріптер жиыны, бөлімі 6 саны болатын дұрыс бөлшектер жиыны т.с.с.
Жиындар элементтерден құралады. Жиындардың элементтері аталып беріледі немесе сол жиын элементтеріне ғана тән қасиет (белгі) көрсетіледі. Жиынды латынның бас әрпімен белгілеп, оның элементтерін фигуралық жақшаның ішіне алып жазу келісілген.
Мысалы, "планета" сөзіндегі әріптер жиынын P әрпімен белгілесек, Р={а,п,н,л,е,т} немесе Р={т,п,н,л,е,а} элементтер ретін
әр-түрлі жазуға болады.
Жиындар шектеулі жиын, шектеусіз жиын болып бөлінеді.
Мысалы, цифрлар жиыны A - шектеулі жиын, оған 10 элемент енеді. A={0,1,2,3,4,5,6,7,8,9} жиынының элементтер санын көрсетіп жазсақ: n(A)=10. Ал натурал сандар жиыны N - шектеусіз жиын.
Егер a элементі B жиынына тиісті болса, оның жазылуы:
a B.
Оқылуы: "a B жиынының элементі" немесе "a- B жиынына
тиісті".
Мысалы, 7 саны натурал сандар жиынына тиісті: 7 N.
Егер c элементі A жиынына тиісті болмаса, оның жазылуы:
c A. Оқылуы:"с элементі A жиынына тиісті емес".
Мысалы, 0 саны натурал сандар жиынына тиісті емес: 0 ₡ N.
Егер жиында бірде-бір элемент болмаса, оны бос жиын деп атайды. Бос жиынның белгіленуі: . Мысалы, 74 және 79 сандарының арасындағы жай сандар жиыны - бос жиын.
Егер B жиынының әрбір элементі A жиынына тиісті болса, онда B жиыны A жиынының ішкі жиыны деп аталады. Мысалы,
A={1,2,3,4,5,6,7} жиынындағы жұпсандар жиыны - B={2,4,6}. B жиынының әрбір элементі A жиынына тиісті.
Белгіленуі: B A.
Оқылуы: B жиыны - A жиынының ішкі жиыны.
Жиындардың байланыстары мен арақатынастары Эйлер-Венн дөңгелектері арқылы кескінделеді.
Суретте - B жиыны A жиынының ішкі жиыны екені Эйлер-Венн дөңгелектері арқылы кескінделген.
Бос жиын кез келген жиынның ішкі жиыны болады. Белгіленуі: 0 С A. Мұндағы A - қандай да бір жиын.