Аэросъёмкой называют процесс получения изображений местности с летательных аппаратов. Если её ведут фотоаппаратами, то её называют аэрофотосъёмкой, если с помощью специальных телевизионных или электронных сканирующих устройств, то – электронной аэросъёмкой, если с помощью тепловизоров в инфракрасной части спектра, то - тепловой или инфрарасной съёмкой, а если радиолакаторами, при которых получают изображение в отражённых от поверхностных слоёв электромагнитных радиоволн – радиолакационной съёмкой.
Регистрацию изображений местности можно вести в разных зонах спектра электромагнитных волн: видимой с длинами волн (0,38 – 0,78 мкм), ультрафиолетовой ближней (0,28 – 0,32 мкм), инфракрасной (0,18 – 10 мкм), или микрорадиоволновой (0,01 – 100 см). Съёмку выполняют либо водной зоне электромагнитного излучения, либо одновременно в нескольких.
Одним из современных методов сбора и обработки данных о местоположении объектов и рельефе местности, а также их качественных и количественных характеристиках, является комбинированный метод на основе лазерной локации и цифровой аэрофотосъёмки.
При инфракрасной аэросъёмке регистрируется электромагнитное излучение в диапазоне длин волн 0,7 – 12 мкм, которое излучают или отражают различные объекты местности. Инфракрасное излучение как носитель информации близко к свету и радиосигналам, зависит от температуры источника излучения, характеризует его вещество и состояние. Оно выявляет внутренние свойства объектов, позволяет изучать процессы в верхнем слое Земли. Инфракрасные системы имеют оптическую часть, приёмное устройство, устройство обработки и выдачи информации. Излучение природной среды в ифракрасной области спектра регистрируется тепловизорами в трёх зонах: ближней (0,7 – 2,5 мкм), средней (3,0 – 5,5) мкм) и дальней (8 – 12 мкм). На практике установлена важность совместного дешифрирования панхроматических и инфракрасных аэрофотоснимков.
Российский тепловизор «Вулкан» производит аэрофотосъёмку преимущественно в средней инфракрасной зоне спектра, а тепловизор шведской фирмы «AGA» - в дальней инфракрасной зоне спектра. Их применение особенно эффективно при выявлении и изучении переувлажнённых и мерзлотных участков земной поверхности, течений грунтовых вод, гидрологии мелководий и речных отложений, выделении отдельных горных пород.
При радиолокационной съёмке получают изображения местности в радиоволновом диапазоне электромагнитного излучения. Существуют специально приспособленные для глубинных геологических гидрологических работ многочастотные радиолакационные установки, использующие сантиметровые дециметровые волны. Радиолакационные съёмки особенно эффективны при исследовании влажности, мерзлотных явлений, болот, геологических и гидрологических образований.
Радиолокационная съёмка (РЛС) делится на съёмку бокового обзора и съёмку кругового обзора. Наибольшее расстояние до объектов, при котором они обнаруживаются, называется дальностью действия. Разрешающая способность – это минимальное расстояние между двумя объектами, имеющими один и тот же азимут или угол, при котором отражённые сигналы не сливаются на экране индикатора, то есть когда на экране электроннолучевой трубки начало импульса от от второго объекта отстаёт от конца импульса от первого объекта на время, превышающее длительность одного импульса. При радиолокационной съёмке посылаются сигналы, излучающие энергию в определённых направлениях и принимают сигналы так же с определённых направлений. Чем уже диаграмма направленности, тем выше разрешающая способность РЛС.
Наиболее интенсивно развиваются и широко распространены для картографических целей методы аэрофотосъёмки, космической съёмки и комбинированный метод лазерной локации и цифровой аэрофотосъёмки, который применяется преимущественно для крупномасштабного картографирования и особенно эффективно для линейных объектов. Эти методы рассматриваются далее более детально.