Диплом жұмыс Тақырыбы: Бүтін сандар жиынында теңдеулерді шешу. Орындаған: Нысанова Эльмира



бет66/213
Дата22.12.2019
өлшемі19,69 Mb.
түріДиплом
1   ...   62   63   64   65   66   67   68   69   ...   213

, (2)

(3)

Біз бұл теңдеудің барлық түбірлері әр түрлі және a0∙ an ≠ 0деп қана емес, бұл теңдеудің түбірлері бүтін коэфициентті төменгі дәрежелі теңдеудің түбірлері бола алмайды деп ұйғарайық.



Жоғарғы алгебрада әрбір алгебралық теңдеудің ең болмағанда бір түбірі бар екені дәлелденеді, әрбір көпмүшелік бүтіндей (z - α) бірмүшелігіне бөлінеді, егер α – оның түбірі болса. Көпмүшелікті көбейтінді түрінде жазсақ:

(4)

мұндағы α1, α2, …,αn – берілген көпмүшеліктің барлық n түбірлері. Көпмүшеліктің көбейтінді түрінде жазылған өрнегін пайдаланып, (2) теңдеуді мына түрде жазуға болады:



(5)


М. о. әуезов атындағы оңтүстік қазақстан мемлекеттік университеті.
Алгебралық санның дәржесі дегеніміз – осы сан қанағаттандыратын кіші дәрежелі бүтін коэффициентті алгебралық теңдеудің дәрежесі.
Жылқыға жем беру
Тазы мен түлкі
Ет алушылар неше адам?
Жерден қоян тапқандай
Ешкілі жігіт


Достарыңызбен бөлісу:
1   ...   62   63   64   65   66   67   68   69   ...   213


©engime.org 2017
әкімшілігінің қараңыз

    Басты бет