Интегралы от тригонометрических функций. Примеры решений



бет5/10
Дата07.02.2022
өлшемі144,14 Kb.
#95336
түріСправочник
1   2   3   4   5   6   7   8   9   10
Байланысты:
Интегрирование рациональной и тригонометрической функции

Метод замены переменной
Как уже упоминалось в статье Метод замены переменной в неопределенном интеграле, основной предпосылкой для использования метода замены является тот факт, что в подынтегральном выражении есть некоторая функция  и её производная  :
 (функции  ,  не обязательно находятся в произведении)
Пример 11
Найти неопределенный интеграл.

Смотрим в таблицу производных и замечаем формулы  ,  , то есть, в нашем подынтегральном выражении есть функция и её производная. Однако мы видим, что при дифференцировании косинус и синус взаимно превращаются друг в друга, и возникает вопрос: как выполнить замену переменной и что же обозначать за  – синус или косинус?! Вопрос можно решить методом научного тыка: если мы неправильно выполним замену, то ничего хорошего не получится.


Достарыңызбен бөлісу:
1   2   3   4   5   6   7   8   9   10




©engime.org 2024
әкімшілігінің қараңыз

    Басты бет