Таралу функциясының графигі у=0, у=1(1-ші қасиеті) түзүлерімен шектелген жолақта орналасқан. X (a; b) интервалында өскенде, кездейсоқ шаманың барлық мүмкін мәндерінің графигі ‘’жоғары көтеріледі’’.
Егер болса, графиктің ординатасы 0-ге тең;
Егер болса, графиктің ординатасы 1-ге тең.
Биномиалдық таралу
n тәуелсіз сынақ жүргізілсін, әрбір сынақ нәтижесінде А оқиғасы пайда болуы мүмкін немесе пайда болмауы мүмкін. Әрбір тәжірбиеде оқиғаның пайда болу ықтималдығы тұрақты және р-ға тең (сәйкесінше оқиғаның пайда болмау ықтималдығы q=1-p) .
Х дискретті кездейсоқ шамасын А оқиғасының осы жүргізілген сынақтағы саны деп қарастыралық.
Х шамасының таралу заңын табайық.
А оқиғасы пайда болмауы мүмкін немесе 1 рет, 2 рет,..., немесе n рет пайда болуы мүмкін. Яғни х-тің мүмкін мәндері мынандай: х1=0, х2=1, х3=2,..., хn+1= n. Осы мүмкін мәндерінің сәйкес ықтималдықтарын табу үшін Бернулли формуласын қолданамыз: