т.е. проекция ускорения точки на координатные оси равны первым производным от проекций скорости или вторым производным от соответствующих координат точки по времени. Модуль и направление ускорения найдутся из формул
где α1, β1, γ1 - углы, образуемые вектором ускорения с координатными осями.
Пример 3. Движение точки задано уравнениями x=2t, y=3-4t2.
Из первого уравнения t=x/2. Подставив во второе, получим уравнение траектории: y=3-x2 Это уравнение параболы. В начале движения, при t=0, точка находилась на самом верху, в положении M0 (x0=0, y0=3 см).
А, например, при t =0,5 c она будет в положении M с координатами x1=1 см; y1=2 см.
Проекции скорости на оси vx= =2см∙с-1, vy= =-8t см∙с-1.
При t =0,5 c, vx=2см∙с-1, vy=-4 см∙с-1.
И модуль скорости
Составляющие скорости по осям и вектор её показаны в масштабе на рис. 10.
Рис.10 Проекции ускорения ax= =0, ay= =-8 см∙с-2. Так как проекция вектора ускорения на ось x равна нулю, а на ось y – отрицательна, то вектор ускорения направлен вертикально вниз, и величина его постоянна, не зависит от времени.